Separating Markov's Principles

LICS '24, Tallinn July 9th, 2024

Liron Cohen¹, Yannick Forster², Dominik Kirst², <u>Bruno da Rocha Paiva</u>³, Vincent Rahli³

¹Ben-Gurion University, Israel ²Inria Paris, France ³University of Birmingham, UK

Markov's Principle and Equivalent Sentences

Markov's Principle

Given a binary sequence $(b_i)_{i:\mathbb{N}}$, if not all of its entries are 0, then $b_i = 1$ for some *i*.

This is equivalent to:

- Post's theorem: A Σ_1° predicate whose complement is Σ_1° is decidable.
- "A computation halts if it does not loop."
- Completeness of Σ_1° theories of classical first-order logic with respect to Tarski models.

Object Type Theory

We model MLTT with:

- \mathbb{B} , \mathbb{N} , empty and unit types;
- Π and Σ types;
- A universe \mathbb{U} ;
- A truncation $\|\cdot\|$ into propositions.

Markov's Principles in Type Theory

Depending on our reading of decidable predicate, we state MP in the object type theory as:

$$MP_{\mathbb{U}} := \forall A : \mathbb{N} \to \mathbb{U}. \ (\forall n. \ An \lor \neg An) \to \neg \neg (\exists n. \ \|An\|) \to \exists n. \ \|An\|$$
$$MP_{\mathbb{B}} := \forall f : \mathbb{N} \to \mathbb{B}. \qquad \neg \neg (\exists n. \ fn = true) \to \exists n. \ fn = true$$
$$MP_{\mathbb{B}} := \forall f : \mathbb{N} \to \mathbb{B}. \qquad \neg \neg (\exists n. \ fn = true) \to \exists n. \ fn = true$$

 $MP_{PR} := \forall f : \mathbb{N} \to \mathbb{B}$. primitive-recursive $f \to \neg \neg (\exists n. fn = true) \to \exists n. fn = true$

Cohen, Forster, Kirst, da Rocha Paiva, Rahli

Separating Markov's Principles

Some Implications

$$\mathsf{MP}_{\mathbb{U}} := \forall A \colon \mathbb{N} \to \mathbb{U}. \ (\forall n. \ An \lor \neg An) \to \neg \neg (\exists n. \ \|An\|) \to \exists n. \ \|An\|$$

 $\mathsf{MP}_{\mathbb{B}} := \forall f : \mathbb{N} \to \mathbb{B}. \qquad \neg \neg (\exists n. fn = \mathsf{true}) \to \exists n. fn = \mathsf{true}$

 $\mathsf{MP}_{\mathsf{PR}} := \forall f : \mathbb{N} \to \mathbb{B}. \text{ primitive-recursive } f \to \neg \neg (\exists n. fn = \mathsf{true}) \to \exists n. fn = \mathsf{true}$

Some Implications

$$\mathsf{MP}_{\mathbb{U}} := \forall A \colon \mathbb{N} \to \mathbb{U}. \ (\forall n. \ An \lor \neg An) \to \neg \neg (\exists n. \ \|An\|) \to \exists n. \ \|An\|$$

 $\mathsf{MP}_{\mathbb{B}} := \forall f : \mathbb{N} \to \mathbb{B}. \qquad \neg \neg (\exists n. fn = \mathsf{true}) \to \exists n. fn = \mathsf{true}$

 $\mathsf{MP}_{\mathsf{PR}} := \forall f : \mathbb{N} \to \mathbb{B}. \text{ primitive-recursive} f \to \neg \neg (\exists n. fn = \mathsf{true}) \to \exists n. fn = \mathsf{true}$

Cohen, Forster, Kirst, da Rocha Paiva, Rahli

Separating Markov's Principles

Realizability Models of MLTT with Choice Sequences

Use two different instantiations of TT_C^{\Box} to get the following models:

Second model of MLTT

Choice sequences of propositions

Brouwer's Choice Sequences

- Infinite sequences whose values are "generated" over time.
- Only have access to a prefix of the sequence at any given time.

A Formal Reading of Choice Sequences

Fix a pre-ordered set (W, \sqsubseteq) .

A (Boolean) choice sequence is a function $f:\mathbb{N}\to\mathbb{W}\to\mathbb{B}_\perp$ such that:

- for all n, f(n) is monotonic
- for all *n* and paths $(w_i)_{i:\mathbb{N}}$ through W, there exists some *m* such that $f(n)(w_m) \downarrow$

An Informal Formal Reading of Choice Sequences

Fix a pre-ordered set (W, \sqsubseteq) .

A (Boolean) choice sequence is a function $f:\mathbb{N}\to\mathbb{W}\to\mathbb{B}_\perp$ such that:

- for all n, f(n) is monotonic
 - once an entry is generated it cannot change
- for all *n* and paths $(w_i)_{i:\mathbb{N}}$ through W, there exists some *m* such that $f(n)(w_m) \downarrow \circ$ every entry will eventually be generated

Covering Relation

 $\mathrm{TT}_{\mathrm{C}}^\square$ can be instantiated with different covering relations, for this work we use:

Beth Covering

An upwards-closed subset $U \subset W$ covers a world *w* if:

• for all paths $(w_i)_{i:\mathbb{N}}$ starting at w, we have some n with $w_n \in U$.

The semantics then follow closely with sheaf semantics.

Covering Relation

 $TT^{\square}_{\mathcal{C}}$ can be instantiated with different covering relations, for this work we use:

Beth Covering

An upwards-closed subset $U \subset \mathbb{W}$ covers a world w if:

• for all paths $(w_i)_{i:\mathbb{N}}$ starting at w, we have some n with $w_n \in U$.

The semantics then follow closely with sheaf semantics.

(thanks Alex for the tutorial ⁽²⁾)

First Separation Result

First model of MLTT

Choice sequences of Booleans

First Separation: Proving MP_{PR}

The following rule is always derivable:

 $\frac{w \models \Gamma, n : \mathsf{Nat} \cap \mathsf{pure} \vdash ||Pn||}{w \models \Gamma \vdash \forall n : \mathsf{Nat}. ||Pn||}$

Primite-recursive functions are encoded by elements of Nat, giving:

 $\mathsf{MP} \text{ in the metatheory } \implies \mathsf{MP}_{\mathsf{PR}} \text{ in the model}$

The semantics of negation are as follows

 $w \vDash \neg A \iff$ for all extensions $u \sqsupseteq w, u \nvDash A$

The semantics of negation are as follows

 $w \vDash \neg A \iff$ for all extensions $u \sqsupseteq w, u \nvDash A$

so in particular we have

 $w \models \neg \neg A \iff$ for all extensions $u \supseteq w$, there exists a further extension $v \supseteq u, v \models A$

For any world *w*, pick an empty choice sequence α . We can always prove that

 $w \vDash \neg \neg (\exists n. \alpha(n) = \mathsf{true})$

For any world *w*, pick an empty choice sequence α . We can always prove that

$$w \vDash \neg \neg (\exists n. \alpha(n) = \mathsf{true})$$

To prove

$$w \vDash \exists n. \ \alpha(n) =$$
true

requires us to show that across all paths at some point a true entry is generated. But there exists a path where only false entries are generated.

For any world *w*, pick an empty choice sequence α . We can always prove that

$$w \vDash \neg \neg (\exists n. \alpha(n) = \mathsf{true})$$

To prove

$$w \vDash \exists n. \ \alpha(n) =$$
true

requires us to show that across all paths at some point a true entry is generated. But there exists a path where only false entries are generated.

Hence we can negate $MP_{\mathbb{B}}$.

Second Separation Result

- Choice sequences of propositions don't allow defining any more functions $\mathbb{N} \to \mathbb{B}$ $\sim MP$ in the metatheory $\implies MP_{\mathbb{B}}$ in the model
- Similar argument as before proves negation of $\mathsf{MP}_\mathbb{U}$

Conclusion

- Be careful how you state Markov's Principle!
- Choice sequences are great at falsifying classical principles concerning sequences.
 → same setup works for different versions of LPO, and likely for WLPO and LLPO too.
- Realizability models allow for fine control over the allowed choice sequences.
 → namely having boolean versus propositional choice sequences.

A Truncation Into Propositions

Homotopy Type Theorists Be Advised

We do not model the HoTT-style propositional truncation.

We are missing the typical universal mapping property

 $\Pi P: \Omega, (A \to P) \simeq (\|A\| \to P)$

Instead we validate the following

$$\Pi B: \mathbb{U}, (A \to ||B||) \simeq (||A|| \to ||B||)$$