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The Path Ahead

1. Some quick philosophising on mathematics

2. Brouwer and his choice sequences

3. Using choice sequences to disprove Markov’s Principle

4. How Brouwer’s ideas are still relevant today
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Nature of Mathematics

What is mathematics?

What is proof?

Who decides?
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Platonism: Maths is Important

Mathematical Platonism
Mathematical objects are abstract entities that are eternal and
unchanging.

Gödel was a major figure of math-
ematical platonism, believing that
mathematics was an empirical sci-
ence.
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Formalism: Maths is Not Important

Formalism
Mathematics is the study of string manipulation according to
rules.

Hilbert was a major figure with his
program searching for a complete
and consistent axiomatisation of
mathematics.
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Brouwer: a Contrarian

Born in the Netherlands in 1881,
ended his doctoral studies in 1907.

Regarded as one of the founders of
modern topology.

Also regarded as very opinionated
on the nature of mathematics.
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Brouwer’s Intuitionism

Brouwer’s Intuitionism
Mathematics is about mental constructions.

For the subject to prove a mathematical statement, the subject
must perform an appropriate mental construction exhibiting it.

Introduces a temporal aspect to mathematics — what is true
increases as the subject experiences more.
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Choice Sequences by Example

Consider the following definition of an infinite sequence:

α(n) =


1 if P has been proven by time n

−1 if P has been disproven by time n

0 otherwise

At any point we only know a finite prefix of this sequence.
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Choice Sequences by Definition

Choice Sequences
A choice sequence is an infinite sequence of which we only know
of a finite prefix of.
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Making Choice Sequences Formal

Consider the following set of worlds given by lists:

[ ] [0] [0, 0]
. . .

[0, 1]
. . .

[1] [1, 0]
. . .

[1, 1]
. . .

[2]
. . ....
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Making Choice Sequences Formal

In relation to a world w , we evaluate α(n) as follows

α(n) =

w [n] if w has an nth entry

undefined otherwise

An equality is true if there exists some set of worlds covering all
possible paths from the starting world where both sides are defined
and the equalities between natural numbers hold.
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Understanding Equalities Involving Choice Sequences

The equality α(0) = 0 is true:

[ ] [0] [0, 0]
. . .

[0, 1]
. . .

[1] [1, 0]
. . .

[1, 1]
. . .

[2]
. . ....
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Understanding Equalities Involving Choice Sequences

The equality α(0) = 0 is false:

[ ] [0] [0, 0]
. . .

[0, 1]
. . .

[1] [1, 0]
. . .

[1, 1]
. . .

[2]
. . ....
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Understanding Equalities Involving Choice Sequences

The equality α(0) = 0 is undecided:

[ ] [0] [0, 0]
. . .

[0, 1]
. . .

[1] [1, 0]
. . .

[1, 1]
. . .

[2]
. . ....
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Enter Markov’s son, Markov Jr.

Born in Russia in 1903, finished his
doctoral studies in 1924.

A prototypical computer scientist.
Maybe just a computer scientist.
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An Obvious Truth

Markov’s Principle
For any decidable predicate A on natural numbers we have

(¬¬∃n,A(n)) =⇒ (∃n,A(n))

If it is impossible that no natural number exists satisfying A, then
there must exist some natural number n such that A(n) is true.
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Justifying an Obvious Truth
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Disproving an Obvious Truth

Proving statements about choice sequences is like playing a game
against a belligerent crystal ball that always generates the most
inconvenient entries.
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Double negations are easy to prove

To prove double negated statements such as

¬¬∃n, α(n) = 0

we only need one path where the crystal ball generates a 0.
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Double negations are easy to prove

[ ] [0] [0, 0]
. . .

[0, 1]
. . .

[1] [1, 0]
. . .

[1, 1]
. . .

[2]
. . ....
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Non negations are hard to prove

To prove non-negated statements such as

∃n, α(n) = 0

we need the crystal ball to generate a 0 in all paths.
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Non negations are hard to prove

[ ] [0] [0, 0]
. . .

[0, 1]
. . .

[1] [1, 0]
. . .

[1, 1]
. . .

[2]
. . ....
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Disproving an Obvious Truth

Markov’s Principle
For any decidable predicate A on natural numbers we have

(¬¬∃n,A(n)) =⇒ (∃n,A(n))

So we can disprove Markov’s Principle instantiated with the
predicate α(n) = 0 for A.
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The Current Day

By extending type theory with choice sequences, Coquand and
Mannaa show that Markov’s Principle is independent of type
theory [5].

By varying the notion of choice sequences, different versions of
Markov’s Principle can be separated in type theory [7].

Brouwer’s ideas on continuity and his bar thesis are also being
explored in type theory [4, 6, 8, 1, 2, 3]
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Conclusion

It is possible to envision mathematics as a timeful endeavour, as
opposed to a timeless one.

Brouwer was a proponent of this view who used it with great effect
to study a constructive account of analysis.

Even 100 years later, Brouwer’s ideas are still relevant to the study
of mathematical foundations and type theory.
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