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Abstract

Interval algebras were first introduced by Allen to reason about time intervals qualitatively.
As a result they have been mainly of interest in computer science, where their applications
and questions about decidability have been considered. However, so far they have not been
studied in a model theoretic capacity: for example pinning down their axioms and finding
their out what properties their models have.

In this report we provide a first order axiomatisation of Allen’s interval algebra and we
show two constructions: the interval construction Int (−) sending a linear order to the
interval algebra of its non-zero intervals; and the points Pts (−) construction sending an
interval algebra to the linear order of start and end points of its intervals. We show these
constructions give rise to a pair of adjoint functors, and we leverage this to show the Fraïssé
limit of the finite interval algebras is Int (Q). From a stability theory perspective, we show
that the stable interval algebras are exactly the finite interval algebras and that for any
linear order L, Int (L) has the non-independence property.
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1 Introduction

1 Introduction

1.1 Motivation

Model theory concerns itself with the connection between first order theories, that is sets of
axioms possibly using universal and existential quantifiers, and the models of these theories.
Some early examples of significant results in model theory can be found in the compactness
and Löwenheim–Skolem theorems, all of which focus on the existence of models for a theory:
the compactness theorem saying that a model exists for a theory if models exist for each
finite fragment of the theory; and the Löwenheim–Skolem theorems saying that if a theory
has an infinite model, then there exist models of any cardinality greater than or equal to
the number of symbols in the language.

As a consequence of the Löwenheim–Skolem theorems, we know that there exists no theory
with a unique infinite model up to isomorphism. This raises the question of what can be
said about the number of models a theory has for each cardinality.

Definition 1.1. For a complete theory T, we write I(T, κ) to mean the number of models,
up to isomorphism, of T with cardinality κ. We call I(T,−) the spectrum of T.

One of the first answers to this question came in the form of Morley’s categoricity theorem,
which said that for a complete countable theory T, if I(T, κ) = 1 for some uncountable κ,
then I(T, λ) = 1 for all uncountable λ. [1] Work by Shelah in the 1970s then extended this
result to uncountable theories [2], beginning the study of classification theory as a discipline
of model theory.

Some important notions from stability theory came in the form of stable and unstable
theories. Stable theories are well-behaved enough to limit their number of models, while
unstable theories always have the maximum number of models, that is if T is unstable then
for any κ > |T| we have I(T, κ) = 2κ. [3] Most naturally occuring theories in mathematics
tend not to be stable though, for example the full theory of any linear order or the theory of
real closed fields. Hence it is only natural to study generalisations of stable theories, which
will not be as well-behaved but allow us to learn about wider classes of theories. One such
generalisation comes from the non-independence property, which, informally, says that there
is no formula which can pick out every subset of an infinite subset of a model.

Classification theory is not the only active discipline of model theory however. Another area
with a lot of interesting questions comes from the study of homogeneous structures, where
any isomorphism between finite substructures can be extended to an automorphism of the
homogeneous structure. In 1953, Fraïssé showed how to construct such structures by gluing
classes of finite structures together [4], from which their study followed.

Hence, in the spirit of these disciplines, we will consider the first-order theory of interval
algebras: a concept first introduced by Allen in 1983 to argue about time qualitatively. We
will consider the models of this theory and how well-behaved they are, with the ultimate
goal of finding their place in the universe of model-theory.
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1.2 Report Structure

The rest of the report will be structured as follows. In Section 2 we summarise the results
from Allen’s original paper on interval algebras [5], focusing on the choices that lead to the
13 relations and the algorithm to infer missing relations from a given interval network. We
also introduce the necessary notions from model theory such as homogeneous models, and
stable/NIP theories. We try to keep this introduction grounded by working through some
examples where possible. Readers comfortable with these areas may safely skip them in
favour of Section 3 and onwards.

In Section 3 we tackle the question of axiomatisation of interval algebras. We propose some
axioms based on the understanding from Section 1 and show that these are satisfiable by
constructing models from linear orders. To further justify this axiomatisation, we will also
show how to extract an underlying linear order from an interval algebra.

In Section 4 we explore further the intervals and points constructions from Section 3 and
show they can be extended to two adjoint functors between the relevant categories of models.
We give characterisations of the interval algebras and linear orders for which the unit and
counit are isomorphisms. These characterisations will be expressible as first order sentences,
a fact we will use when studying the classification theory of interval algebras.

Finally, in Section 5 we study the model theory of interval algebras. This begins by con-
sidering the the class of finite interval algebras and computing its Fraïssé limit using the
machinery developed in Section 4. On the topic of stability, we show that the stable interval
algebras are exactly the finite interval algebras. Following this there is a study of the NIP
in interval algebras: we find a big class of algebras with the NIP as well as an example of
an interval algebra with the IP.

1.3 Ethical Considerations

Model theory, being a subfield of mathematical logic, is an area certainly very theoretical
and firmly lodged inside “pure mathematics”. As such, the work done in this project has
been entirely theoretical and mainly for aesthetic purposes. While Allen’s interval algebra
is a very concrete construction with a lot of possible real-world applications, none of these
applications are expected to benefit from our findings.

And so the main ethical consideration to be had is one familiar to all theoretical projects,
that of correctness. Because if our work is both wrong and has no applications, then it will
really have been for nothing. Hence a lot of care has been taken to ensure the whole content
of this report is correct and that all the arguments hold up to scrutiny. Any omitted proofs
have still been checked on paper and so, short of formalising all of this work in a theorem
prover, we can be quite sure of its correctness.
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2 Background

2.1 Allen’s Interval Algebra

The concept of Allen’s interval algebras was first introduced in [5]. The main idea was
to introduce a new system for arguing about time intervals in a qualitative way, similar
to how humans think about time. For example, when retelling a story people will convey
some ordering of events’ start and end times, while skipping over the actual figures. Now,
this might happen because the specific time frames aren’t relevant to the story or even
because they are not known. Regardless of the reason, it is often helpful to talk about
time without being overly explicit. Computers however, tend to argue about time in a
quantitative manner: saving timestamps inside of logs, such that if something goes wrong,
the order of events can be gotten; checking the system clock to tell if access tokens have
expired; so on. The difficulties of expressing time qualitatively on a computer become even
more obvious when working towards artificial intelligence, for instance in natural language
processing, where the computer must be able to infer the timing of events from people’s
informal speech or writing.

Interval algebras were Allen’s approach to have computers reasoning about time as humans
did and still do. In an interval algebra, time intervals are treated as primitives, with binary
relations recording their ordering and level of overlap. There are 13 basic relations which
allow one to describe fully how any two intervals I and J might relate. The relations and
their meaning can be found in Table 1. Apart from = which is its own dual relation, relations
come in pairs of dual relations: as an example, if it is known that I < J , then it can be
immediately infered that J > I. Due to this duality we have omitted the meaning of the
dual relations from Table 1 to save space. We have also used I− and I+ as shorthands for
the start and end points of the interval I.

Relation Symbol Dual Symbol Meaning
I starts J I < J I > J I− < I+ < J− < J+
I meets J I m J I M J I− < I+ = J− < J+
I overlaps J I o J I O J I− < J− < I+ < J+
I starts J I s J I S J J− < I− < I+ < J+
I finishes J I f J I F J I− = J− < I+ < J+
I during J I d J I D J J− < I− < I+ = J+
I equals J I = J I = J I− = J− < I+ = J+

Table 1: 13 Basic Relations of Allen’s Interval Algebra

The choice of these 13 relations has some advantages which simplify reasoning, namely the
relations are both exhaustive and mutually-exclusive. By exhaustive we mean that for any
two intervals I and J , there exists at least one relation R such that I R J . By mutually
exclusive we mean there exists at most one such relation R for any two intervals I and J .

Looking at the intended meaning of each relation in Table 1 it seems that time points are
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not considered as valid intervals since I− is always strictly less than I+. This is no accident,
as time points can cause ambiguities and thus complicate the semantics of interval algebras.
This deserves some attention, since in natural language we often refer to actual points in
time instead of intervals. For example the phrase “I caught the ball” suggests that the act
of catching the ball was instantaneous, even though it definitely happened over an interval
of time, simply a very short one. In reality, whether we consider certain intervals as time
points or as actual intervals depends a lot on context. Furthermore, if one really wishes to
deal with time points, then they can be modelled by suitably small intervals.

2.1.1 Basic Algorithm

With some of the main ideas explained, now is a good time to see the basic algorithm
described in [5]. It takes as input a collection of intervals and their known relations, and
attempts to infer as many of the missing relations as possible. As mentioned before, time
intervals are primitives in Allen’s interval algebra and since every two intervals must be
related by one of the symbols in Table 1, directed graphs with labeled edges are a good
representation of this information. In such a graph, there will be a node for each time
interval we are interested in, and each edge will be labelled with the sets of symbols that
describe the possible relations between the source and target intervals. Considering an
illustrative example, suppose there are two nodes I and J with an edge from I to J labelled
by “<mo”: this should be read as saying that one of I < J , I m J or I o J is expected to
hold, although we do not know which one. This labelling takes advantage of the fact that all
the basic relations are mutually exclusive, so the implied disjunctions in the above notation
cause no ambiguities. Similarly, the fact that the relation symbols are exhaustive also has
a consequence for this representation: naïvely, we would expect the interval graph to be a
complete directed graph, but as the 13 basic relations all have a dual, it is always possible
to tell what the label from I to J should be by reading the label from J to I. As a result,
with some care, one can use an undirected graph, allowing for some saved space.

Before seeing the main algorithm it will be helpful to define a helper function: when given
two relation symbols r1 and r2 linking three intervals by I r1 J and J r2 K, it is important
to tell what constraints there are on the possible relations between I and K. This is done
by looking up the relevant entry T (r1, r2) of Table 2. Next, given a pair of edges from
I to J and J to K, each labelled by the strings R1 and R2, we let Constraints(R1, R2)
be the minimum set of relation symbols which could relate I and K. The pseudocode for
computing this can be found in Algorithm 1.

As for the actual algorithm in question, the pseudocode to update a temporal network with
a new label for a specific edge can be seen in Algorithm 2. It is assumed there exists a ToDo
queue where where we place edges whose constraints need to be updated. Furthermore, for
intervals i and j, we let N(i, j) denote the label on the edge from i to j in the interval graph
and use R(i, j) to denote the new label for the edge from i to j. Lastly, in simpler cases
the Comparable function can be taken to always return true, but as the number of intervals
grows it can be used for some optimisations discussed in [5, Chapter 5].
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Table 2: Transitivity table for basic relations – adapted from [6].
Given relations I r1 J and J r2 K, the possible relations between I and K will be under
row r1 and column r2. Entries with the word "full" should contain all relations and entries
labelled "con" should contain "o s f d = O S F D".
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Algorithm 1 Computing constraints given two edge labels. [5]
function Constraints(R1, R2)

C ← ∅
for all r1 ∈ R1 do

for all r2 ∈ R2 do
C ← C ∪ T (r1, r2)

end for
end for
return C

end function

Algorithm 2 Updating temporal network. [5]
procedure To Add(R(i, j))

Add (i, j) to queue ToDo
while ToDo is not empty do

Get next (i, j) from queue ToDo
N(i, j)← R(i, j)
for all nodes k such that Comparable(k, j) do

R(k, j)← N(k, j) ∩Constraints(N(k, j), R(i, j))
if R(k, j) ⊂ N(k, j) then

Add (k, j) to ToDo
end if

end for
for all nodes k such that Comparable(i, k) do

R(i, k)← N(i, k) ∩Constraints(R(i, j), N(j, k))
if R(i, k) ⊂ N(i, k) then

Add (i, k) to ToDo
end if

end for
end while

end procedure
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With an inference algorithm such as this, the question of correctness is quite important.
Thankfully, if given a satisfiable network of intervals, this algorithm will never infer any
erroneous constraints. However, if given an unsatisfiable network, then it is not guaranteed
that the algorithm will detect the unsatisfiability. Since we only consider paths of length
2, any inconsistencies detected must occur within a 3 node subgraph and inconsistencies
from larger subgraphs will be missed. If one is unsure about the satisfiability of the input
graph though, then a search for valid assignments can be made after running the inference
algorithm. It will still be worth it to run the inference algorithm in this case since the extra
added constraints might make it a lot faster to check for valid assignments.
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2.2 Model Theory

We assume some familiarity with the basics of model theory, for which we recommend [7]. In
this section we will focus mainly on the definitions which might not feature in an introductory
course in model theory, but are needed to understand the work done in Section 5.

First we introduce the idea of homogeneous structures, and how to construct examples of
these using Fraïssé limits. These structures will be characterised by their ability to extend
isomorphisms between finite substructures to automorphisms of the whole structure. As a
result, homogeneous structures can have very interesting automorphism groups and their
study helps link model theory, group theory and combinatorics. For a thorough survey of
the area see [8].

Then we will cover some important classes of theories arising from classification theory,
namely we will introduce stable theories and one of their possible generalisations, NIP the-
ories. The concept of stable theories arose to study the spectrum of complete theories,
offering a definitive answer through the use of tools like forking and dividing. NIP theories
generalise the class of stable theories to include important examples like linear orders and
geometric examples like algebraically closed valued fields [9] or the real exponential field
[10].

2.2.1 Homogenous Structures and Fraïssé Classes

We work with the definition of a homogenous structure found in [8] as we are mainly inter-
ested in the study of Fraïssé limits.

Definition 2.1. A homogenous structure is a countable, possibly finite, relational struc-
ture (with finite language L) such that, for every isomorphism f : U → V between finite
substructures U, V ⊆M , there is an authomorphism f ′ :M →M on M extending f .

The simplest example of a homogeneous structure comes from the theory of strict linear
orders, which we now define.

Definition 2.2. We define the language of strict linear orders LSLO as the single binary
relation {<}.

Definition 2.3. We define the theory of strict linear orders as

TSLO =
{
∀a,¬ (a < a),

∀a,∀b,∀c, (a < b) ∧ (b < c)→ (a < c)

∀a,∀b, (a < b) ∨ (a = b) ∨ (b < a)
}

So a strict linear order consists of a binary relation on a set, which is irreflexive, transitive
satisfies the trichotomy condition. Notice that from these we can infer that the binary
relation must be antisymmetric, since if a < b and b < a then by transitivity a < a, which
contradicts the irreflexivity of <.
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Proposition 2.4. The strict linear order (Q, <) is homogeneous.

Proof. First we see how to expand the domain of an order isomorphism f : L → P with
L,P ⊆ Q both finite. Suppose that we wish to extend the domain of f to include some
a ∈ Q \ L. There are three cases to worry about here:

• If a is an upper bound for L, we fix some upper bound b of P which is not in P . Such
a b must exist as Q is unbounded and P is finite. Then, we extend f : L → P to
g : L ∪ {a} → P ∪ {b} by sending g(a) = b. This remains an order isomorphism since
for any x ∈ P , we must have x < a and g(x) < b = g(a) since a and b are upper
bounds of L and P respectively.

• If a is a lower bound for L, then we fix a lower bound b of P not already in P and
extend f to g : L∪{a} → P ∪{b} by sending a to b again. Dually to the upper bound
case, a and b are lower bounds of the domain and codomain, hence g remains an order
isomorphism.

• If a is neither an upper nor lower bound, then we notice that L,P are finite linear orders
and hence discrete. This means that we can find a1, a2 ∈ L such that a1 < a < a2
and for no x ∈ L do we have a1 < x < a2. Now we can fix some b ∈ Q \ P such that
g(a1) < b < g(a2) since Q \ P is still dense. We extend f to g : L ∪ {a} → P ∪ {b}
by sending g(a) = b. This remains an order isomorphism since for any x ∈ L we have
either x ≤ a1 < a, so

g(x) = f(x) ≤ f(a1) = g(a1) < b = g(a)

or we have a < a2 ≤ x, in which case

g(a) = b < g(a2) = f(a2) ≤ f(x) = g(x)

If we wanted to expand the codomain of f then it suffices to extend the domain of f−1 to
include whichever element we needed, giving us a function g. The inverse g−1 is then the
required extension of f .

Now, fix two finite suborders L,P ⊆ Q and suppose we have some order isomorphism
f : L → P . To extend f to an automorphism of Q we start by fixing an enumeration
(a1, a2, . . . ) of the elements of Q and we define three sequences: two sequences (L1, L2, . . . )
and (P1, P2, . . . ) of increasing subsets of Q; and a sequence (g1, g2, . . . ) of bijections gi :
Li → Pi where each gi extends its predecessors. These sequences are defined inductively by:

• k = 1: let L1 = L, P1 = P and g1 = f .

• k = 2l for l ∈ {1, 2, . . . }: at even indices we focus on increasing the domain of gi to
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all of Q. If al ∈ Lk−1 already then we let

Lk = Lk−1

Pk = Pk−1

gk = gk−1

Otherwise we extend gk−1 to an order isomorphism h : Lk−1 ∪ {al} → Pk−1 ∪ {b} for
some appropriate b and let

Lk = Lk−1 ∪ {al}
Pk = Pk−1 ∪ {b}
gk = h

• k = 2l+1 for l ∈ {1, 2, . . . }: at odd indices we focus on increasing the codomain of gi
to all of Q. If al ∈ Pk−1 already then we let

Lk = Lk−1

Pk = Pk−1

gk = gk−1

Otherwise we extend gk−1 to an order isomorphism h : Lk−1 ∪ {b} → Pk−1 ∪ {al} for
some appropriate b and let

Lk = Lk−1 ∪ {b}
Pk = Pk−1 ∪ {al}
gk = h

We must have
⋃
Lk =

⋃
Pk = Q since each x ∈ Q must appear as al in our enumeration

for some l ∈ {1, 2, . . . }. So x ∈ L2l and x ∈ P2l+1 implying that x ∈
⋃
Lk and x ∈

⋃
Pk.

Since each gk is an isomorphism, their union g =
⋃
gk must also be and by construction g

will extend f .

The main bulk of the work above comes from the density of Q, in fact, non dense linear
orders are only homogeneous in the trivial case.

Proposition 2.5. If I is a non-dense strict linear order with more than one element, then
L is not homogeneous.

Proof. If the linear order is {x < y} then the map partial isomorphism x 7→ y cannot be
extended further.
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If the linear order has more than 3 elements, we can either find x < y < z or z < x < y
where x and y have no elements inbetween (as the order is not dense). In the first case, the
partial order isomorphism

f : {x, z} → {x, y} sending x 7→ x and z 7→ y.

cannot be extended to add y since there is no w such that f(x) = x < w < y = f(z). By a
similar argument, the following map handles the second case

f : {y, z} → {x, y} sending y 7→ y and z 7→ x.

Corollary 2.6. N and Z are not homogeneous.

Homogeneous structures can seem quite mysterious at first, so it would be interesting to
see how to build homogeneous models of a theory. Towards this goal, fix some relational
language L and structure M and consider the class of finite L-structures embeddable intro
M . This will be called the age of the structure M , denoted Age(M). In general, the age of
any countable relational structure will satisfy the following three properties.

Definition 2.7. A class C has the hereditary property (HP) if it is closed under substruc-
tures, so if A,B are L-structures, A ∈ C and B ⊆ A then B ∈ C too.

Definition 2.8. A class C has the joint embedding property (JEP) if for any A,B ∈ C, we
can find a third L-structure C ∈ C such that A and B both embed into it. language L).

Definition 2.9. A class C is essentially countable (EC) if, up to isomorphism, there are
only countably many L-structures.

Given a class C satisfying the above three properties, one may construct a countable model
M such that Age(M) = C by enumerating all the isomorphism classes in C and gluing all
of these in order using the JEP. Suppose that M is homogeneous though, then we can say
something further about its age, namely it will satisfy the following.

Definition 2.10. A class C has the amalgamation property (AP) if for any span

A←− C −→ B

with A,B,C ∈ C, there exists some L-structure Ω ∈ C with embeddings

A −→ Ω←− B

making the following diagram commute:

C B

A Ω

14
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Considering again a class of models C satisfying the HP, EC, and JEP, suppose further that
that C also has the AP. Then a theorem of Fraïssé tells us that gluing all of the models in
C yields a homogeneous model M with Age(M) = C.

Theorem 2.11 (Fraïssé’s theorem). Given a class C of finite L-structures satisfying the
properties HP, JEP, AP and EC, then there exists some homogeneous L-structure M such
that Age(M) = C. Furthermore, if we have two such homogeneous L-structures M and N ,
then necessarily M ∼= N .

A proof of this, along with proofs that Age(M) satisfies the relevant properties can be found
in [11]. When the above structure M exists for a class C, then we call M the Fraïssé limit
of C.

Note that the uniqueness condition of the Fraïssé limit only applies to homogeneous struc-
tures. In fact, if we consider the class of finite strict linear orders, we can see it coincides with
Age(Q), Age(Z) and also Age(N) despite neither of these linear orders being isomorphic.
We saw earlier that neither Z nor N were homogeneous though, hence why this happens.

As we have decided not to show a lot of proofs for this section, we will instead consider in
detail how to compute the Fraïssé limit of the class FCh of finite strict linear orders, to
hopefully ground all these definitions a bit better. First we need to see this limit exists by
checking that FCh satisfies the 4 properties needed to apply Fraïssé’s theorem.

First we prove some general results about the HP and EC:

Proposition 2.12. Given a relational, universal theory T, the class of finite models of T
satisfies the hereditary property.

Proof. Fix some finite model M |= T and a substructure N ⊆ M . Since M was finite, N
must also be finite. Now, suppose we have a universal sentence

ϕ = ∀x1, . . . ,∀xn, ψ(x1, . . . , xn)

where ψ is a quantifier free formula such that M |= ϕ. Fixing some tuple (a1, . . . , an) ∈ Nn

we know that M |= ψ(a1, . . . , an), but N is a substructure of M and the truth value of
quantifier free formulas is preserved by embeddings, so N |= ψ(a1, . . . , an) too. As we fixed
an arbitrary tuple of elements in N , this means that N |= ϕ. The theory T is taken to be
universal, hence all sentences ϕ ∈ T are equivalent to some universal sentence modulo T.
As we just saw, universal sentences are preserved under taking substructures, so ϕ must be
preserved too. Hence if M |= T, then any substructure N ⊆ M will also be a model of
T.

Corollary 2.13. The class FCh has the HP.

Proposition 2.14. For any finite language L, the class of all finite L-structures is essen-
tially countable.
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Proof. Fix some finite language

L = {c1, . . . , cm, f1, . . . , fn, R1, . . . , Rl}

where the ci are constant symbols, the fi are function symbols and the Ri are relation
symbols. We will show that the class of finite L-structures must be essentially countable.
First, consider the initial segment M = {1, . . . , r} ⊂ N. If we wish to turn M into a L-
structure then we must pick interpretations for all the symbols in L. For a constant symbol
this consists of picking a single element, so there are r possible options. For a function
symbol with a-arity, we need to pick an element of M for every input tuple of a elements of
M , so there are rra possibilities. Similarly, for a relation symbol R with b-arity, we need to
pick a truth value for all tuples of size b in M , so there are 2r

b options. Hence, if we denote
by ai the arity of the symbol fi and bi the arity of the symbol Ri, then the total number
of distinct L-structures on M is finite, more specifically it is r(m+

∑n
i=1 r

ai)2(
∑l

i=1 r
bi). As

such, the set of possible L-structures on all initial segments {1, . . . , r} ⊆ N is countable.
Every finite L-structure must be isomorphic to at least one of these, so the class of finite
L-structures is essentially countable too.

Corollary 2.15. The class FCh is EC.

Proof. The class FCh is a subclass of all finite strict linear orders, hence if the latter is EC,
then the former must also be EC.

Now we focus solely on strict linear orders.

Proposition 2.16. The class FCh has the joint embedding property.

Proof. Given two strict linear orders L,P , we can turn their disjoint union L ⊔ P into a
strict linear order by carrying over the orderings from L and P and setting x < y for all
x ∈ L and y ∈ P . Then, the usual injections into the disjoint union f : L → L ⊔ P and
g : P → L⊔P are order preserving maps. If L and P are both finite, so will L⊔P be, hence
the class of finite strict linear orders has the joint embedding property.

Proposition 2.17. The class FCh has the amalgamation property.

Proof. Given linear orders A,L, P and order embeddings f : A→ L, g : A→ P , we wish to
find a linear order Ω and order embeddings f ′ : L→ Ω, g′ : P → Ω such that f ′ ◦ f = g′ ◦ g.
If any of A,L, P is empty, we devolve to the previous proof, so we may assume that A,L
and P are all non-empty. We take the product L × P and order it lexicographically, such
that for all (x, y), (x′, y′) ∈ L× P

(x, y) < (x′, y′) ⇐⇒ (x < y′) ∨ ((x = x′) ∧ (y < y′))
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Fixing some y ∈ P we define f ′ : L→ L× P by

f ′(x) =

{
(x, g(a)) iff−1(x) = {a}
(x, y) if f−1(x) = ∅

This preserves the ordering of L as it coincides with the identity map on the first coordinate
and we are ordering L× P lexicographically.

Defining g′ : P → L × P is slightly trickier. First, we must pick some yL,U ∈ L such that
L ≤ yL,U ≤ U for all subsets L,U ⊆ L with L < U . Once we have fixed our choices, for any
x ∈ P we denote yx = y{f(a) | g(a)<x},{f(a) | x<g(a)}. Finally, we define

g′(x) =

{
(f(a), x) ifg−1(x) = {a}
(yx, x) if f−1(x) = ∅

To check this preserves the ordering of P , we fix two elements x < x′ of P , then:

• If g−1(x) = {a} and g−1(x′) = {b}, then a < b, which implies that f(a) < f(b), so
g′(x) = (f(a), x) < (f(b), x′) = g′(x′).

• If g−1(x) = {a} and g−1(x′) = ∅, then we have picked yx such that f(a) < yx so
g′(x) = (f(a), x) < (yx, x) = g′(x′).

• If g−1(x) = ∅ and g−1(x′) = {a}, then we have picked yx such that yx < f(a) so
g′(x) = (yx, x) < (f(a), x) = g′(x′).

• If g−1(x) = g−1(x′) = ∅ then notice that yx ≤ yx′ since either there exists some a ∈ A
such that x < g(a) < x′, so then yx ≤ g(a) ≤ yx′ or no such a exists and yx = yx′ .
Thus, g′(x) = (yx, x) < (yx′ , x′) = g′(x′).

Now that we have the required order embeddings into Ω = L×P , we just check the necessary
commutativity condition:

f ′ ◦ f(a) = f ′(f(a)) = (f(a), g(a)) = g′(g(a)) = g′ ◦ g(a)

In the case that A,L, P are finite, then L×P will also be finite, so this shows that the class
of finite strict linear orders has the amalgamation property.

Theorem 2.18. The Fraïssé limit of FCh is Q with its usual order.

Proof. As FCh satisfies the HP, JEP, AP and is EC, then it must have a Fraïssé limit M .
We saw before that Q is homogeneous. By uniqueness of the Fraïssé limit, it suffices to
show that Age(Q) = FCh. Clearly Age(Q) ⊆ FCh since a suborder of a linear order must
still be linear. To see that FCh ⊆ Age(Q) we fix some finite linear order L, then there is
an order preserving isomorphism from L to an initial segment of N. The inclusion N ∈ Q
means this isomorphism realises L as a finite suborder of Q.
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2.2.2 Stable Theories

Definition 2.19. Let T be a complete theory. For an infinite cardinal κ, T is κ-stable if
for every every model M of T and subset A ⊆ M with cardinality |A| = κ, then the set of
complete n-types in M over A, SM

n (A), has cardinality κ.

If a theory T is κ-stable for any infinite cardinal κ, then we call it stable, otherwise it is
called unstable. Given a model M , we say that M is stable (resp. unstable) if the full theory
of M is stable (resp. unstable).

The following theorem gives us a characterisation of stability in terms of linear orders, which
can be simpler to reason with, especially when one considers the close relation between linear
orders and interval algebras.

Theorem 2.20. Let T be a complete theory, then T is stable if and only if there exists a
formula ϕ(v1, . . . , vn;w1, . . . , wn) and a model M |= T with a sequence x1, x2, · · · ∈Mn such
that

M |= ϕ(xi;xj) ⇐⇒ i < j

Such a formula is said to have the order property.

The proof for this is somewhat involved, so we refer the interested reader to [7].

Corollary 2.21. A linear order L is stable if and only if it is finite.

Example 2.22. A complete theory is strongly minimal if for all models M , any definable
set (with parameters) D ⊆M is either finite or cofinite. This turns out to be a very strong
requirement, meaning that strongly minimal theories must also be stable. The proof for
this relies on the equivalence between stability of a theory and non-existence of a formula
with the strict order property (which is slightly different from the order property), and so
is omitted.

We know from [7] that the following are strongly minimal and hence stable:

• The theory of algebraically closed fields in characteristic p in the language of rings: all
definable sets of an algebraically closed field k are boolean combinations of zero sets
of polynomials in k[x]. Since these zero sets are either finite or all of k, then the claim
of strong minimality follows.

• The theory of Q-vector spaces in the language of modules: for a Q-vector space V ,
all definable sets D ⊆ V are given by boolean combinations of formulas of the form
nx = a where n ∈ N, and a ∈ V . If a is nonzero, such a formula can have at most one
solution, hence D will have to be either finite or cofinite.

2.2.3 NIP Theories

Definition 2.23. For a complete theory T, we say that a formula ϕ(x; y) has the inde-
pendence property if there is a model M |= T and sequences (ai)i<ω, (bI)I⊆ω in M such
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that
M |= ϕ(ai, bI) ⇐⇒ i ∈ I

If a formula does not have the IP, we say it has the non-independence property (NIP).

Definition 2.24. A complete theory has the IP if there exists some formula with the IP. It
has the NIP if all formulas have the NIP.

By compactness, to show that a specific formula has the IP, it suffices to consider arbitrarily
large finite sequences.

Proposition 2.25. For a complete theory T, a formula ϕ(x; y) has the IP if and only if the
following is satisfiable

T ∪ {ϕ(ai, bI) | i ∈ I ⊆ {0, 1, . . . , n}}

for arbitrarily large n (where the ai and bI are new constant symbols).

Proof. The forwards implication follows by taking the model and sequences (ai)i<ω, (bI)I⊆ω

which realise the IP for ϕ(x; y) and discarding the ai with i > n and I ⊈ {0, 1, . . . , n}.

For the converse, showing that ϕ(x; y) has the IP amounts to showing the satisfiability of

T ∪ {ϕ(ai, bI) | i ∈ I ⊆ N}

But by compactness, it suffices to show satisfiability of

T ∪ {ϕ(ai1 , bI1), ϕ(ai2 , bI2) . . . , ϕ(aim , bIm)}

where ik ∈ Ik for all k. Letting n = max(i1, i2, . . . , im) and applying our hypothesis, we see
this is indeed satisfiable.

This means that if a theory has the NIP, then for all formulas ϕ(x; y) and all models M ,
there exists a maximum n ∈ N such that for all {a1, . . . , an} ⊆M , there exists some subset
of {a1, . . . , an} which we cannot pick out with ϕ(x; y) regardless of the parameter y.

Being a generalisation of stable theories, we expect all stable theories to also have the NIP.

Proposition 2.26. All stable theories have the NIP.

Proof. Suppose we have a theory T which has the IP, so the IP is realised for some formula
ϕ(x; y) by a model M |= T and elements (ai)i<ω, (bI)I⊆ω. Then the formula

ψ(x, x′; y, y′) = ϕ(x; y′)

is unstable, since if the sequence (ci)i<ω given by ci = (ai, b{n|n<i}) is such that

M |= ψ(ci; cj) ⇐⇒ M |= ϕ(ai; b{n|n<j}) ⇐⇒ i ∈ {n | n < j} ⇐⇒ i < j

This shows that ψ has the order property, so T must be unstable.
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However not all NIP theories are stable, for example all linear orders, infinite or not, are
NIP. The proof of this requires some machinery which is not relevant to the rest of this
project, but the details can be found in [12].

Example 2.27. The real exponential field (R,+, ·, 0, 1, ex) has the NIP. [10] This means
that for any formula ϕ(x; y) there exists some maximum n such that

Th(R) ∪ {ϕ(ai, bI) | i ∈ I ⊆ {0, 1, . . . , n}}

is satisfiable. We refer to this n as the VC dimension of ϕ(x; y). This notion of VC dimen-
sion is not only relevant in model theory, in machine learning it can be used to measure
the expressive power of a classification model. One interesting and often studied class of
classification models comes from feedforward neural networks with sigmoid activation func-
tions. It turns out that any such neural network can be expressed as a first order formula
in the language of exponential fields with its weights as parameters [13] and as such any
feedforward neural network with sigmoid activation functions will have finite VC dimension.

Interestingly, by modifying the above slightly to consider the complex exponential field, we
get a theory with the IP. This points towards the “precariousness” of the NIP, and how even
small changes in the theory may result in losing this property.

Example 2.28. To see why the complex exponential field (C,+, ·, 0, 1, ex) has the IP, we
first see how to define the set of integers. For this, notice that the set {i,−i} is defined by
the formula ϕ(x) = x · x = 1. Then, recall that we have

sin(θ) =
eiθ − e(−i)θ

2i
=
e(−i)θ − eiθ

2(−i)

hence we can define sine using the formula

ψ(x, y) = ∃a,∃b, (a ̸= b) ∧ ϕ(a) ∧ ϕ(b) ∧
(
y =

eax − ebx

2a

)
In turn, this allows us to define 2πZ ⊆ C as the zero set of the sine function. Finally, the
following formula, which essentially says that as integers, y divides x, has the IP

φ(x; y, π) = ∃z, ψ(z, 0) ∧
(
y · z

2π
= x

)
which we show by considering arbitrarily large finite sets. Fix some n, then the subsets of
{1, . . . , n} can be put in bijection with {1, . . . , n2} under some f . Using pk to refer to the
kth prime, we let

bI = (pf(I), π)

for each I ⊆ {1, . . . , n}. Also for each i ∈ {1, . . . , n} we let

ai =
∏

J⊆{1,...,n},
i∈J

pf(J)
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With the use of these parameters

C |= φ(ai; bI) ⇐⇒ pf(I) |
∏

J⊆{1,...,n},
i∈J

pf(J) ⇐⇒ i ∈ I

As this works for arbitrarily n, φ(x; y, a) must have the IP.
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3 Axiomatisation of Interval Algebras

3 Axiomatisation of Interval Algebras

The first step we must take is to define the language of interval algebras. Since equality is
always assumed to be available in first order logic, we only need symbols for the 12 remaining
binary relations.

Definition 3.1. We define the language of Allen interval algebras LAIA as

LAIA = { <−−→, m−−→, o−→, s−→, f−→, d−→, <←−−, m←−−, o←−, s←−, f←−, d←−}

The theory of Allen interval algebras follows closely with Allen’s main concerns in his orig-
inal paper. We must specify that our relation symbols are both exhaustive and mutually
exclusive. It is also important that our dual relation symbols act as such, otherwise the rea-
soning possible would not match with the reasoning done by the interval algebra algorithm.
Finally, we need to encode the many transitivity-like requirements, which is another crucial
feature of the algorithm we saw.

Letting I = {<,m, o, s, f, d,=, >,M,O, S, F,D} and using =−−→ to mean =, we can express
notion of exhaustability with the sentence

ϕexh = ∀I, ∀J,
∨
i∈I

(I
i−→ J)

The mutual exclusivity requirement is expressed by

ϕmutex = ∀I, ∀J,
∧

i, j ∈ I
i ̸= j

¬
(
(I

i−→ J) ∧ (I
j−→ J)

)

The duality is given by the following sentences

ϕdual> = ∀I, ∀J, (I <−−→ J)↔ (J
<←−− I)

ϕdualm = ∀I, ∀J, (I m−−→ J)↔ (J
m←−− I)

ϕdualo = ∀I, ∀J, (I o−→ J)↔ (J
o←− I)

ϕduals = ∀I, ∀J, (I
s−→ J)↔ (J

s←− I)

ϕdualf = ∀I, ∀J, (I f−→ J)↔ (J
f←− I)

ϕduald = ∀I, ∀J, (I d−→ J)↔ (J
d←− I)

And finally, the transitivity of the different relations is given by the following schema, where
we range i, j over I and use T (i, j) to denote the entry under row i and column j of Table 2.

ϕtransi,j = ∀I, ∀J, ∀K, (I
i−→ J) ∧ (J

j−→ K)→ (I
T (i,j)−−−−→ J)

With this, we can now give the theory of interval algebras as the union of all these sentences.
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Definition 3.2. We define the theory of Allen interval algebras TAIA as

TAIA = {ϕexh, ϕmutex, ϕdual> , ϕdualm , ϕdualo , ϕduals , ϕdualf , ϕduald} ∪ {ϕtransi,j | i, j ∈ I}

With a theory defined, the first thing to determine is whether or not it is satisfiable, since
an inconsistent theory would not be very interesting. We should have as models at least the
models considered in Allen’s original paper, which we now check.

Definition 3.3. Given a linear order L we define its set of non-zero intervals Int (P ) as the
set

Int (L) = {(x1, x2) | x1 < x2} ⊆ L2

We can turn this into a LAIA-structure under the interpretations:

• (x1, x2)
i−→ (y1, y2) if and only if L |= ϕ i−→(x1, x2, y1, y2).

• (x1, x2)
i←− (y1, y2) if and only if L |= ϕ i−→(y1, y2, x1, x2).

where we range i over the indexing set {<,m, o, s, f, d} and define the first order LSLO-
formulas by

ϕ <−−→(x1, x2, y1, y2) = (x1 < x2) ∧ (x2 < y1) ∧ (y1 < y2)

ϕ m−−→(x1, x2, y1, y2) = (x1 < x2) ∧ (x2 = y1) ∧ (y1 < y2)

ϕ o−→(x1, x2, y1, y2) = (x1 < y1) ∧ (y1 < x2) ∧ (x2 < y2)

ϕ s−→(x1, x2, y1, y2) = (x1 = y1) ∧ (y1 < x2) ∧ (x2 < y2)

ϕ f−→(x1, x2, y1, y2) = (y1 < x1) ∧ (x1 < x2) ∧ (x2 = y2)

ϕ d−→(x1, x2, y1, y2) = (y1 < x1) ∧ (x1 < x2) ∧ (x2 < y2)

Notice that the subset Int (L) ⊆ L2 is definable using the language of strict linear orders.
Similarly, the interpretations of the relations are also given by formulas in this language. As
a result, the structure Int (L) is interpretable in the strict linear order L.

Theorem 3.4. Given a strict linear order L, Int (L) is a model of TAIA under the above
interpretations.

Proof. First we check that Int (L) |= ϕexh. We want to count the number of possible ar-
rangements of x1, x2, y1, y2 ∈ L under the restriction that x1 < x2 and y1 < y2. Since we
need x1 < x2, we can start with just the following

x1 x2
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Then there are 5 possible positions for y1: we can have y1 = xi for some i or y1 can lie on
one of the lines, distinct from both x1 and x2. Then, since we need y1 < y2, the number of
possible arrangements can be seen to be 5+5+3+3+1 = 13. Including equality, we have 13
relation symbols, each representing a different ordering between the xi and yi, which must
mean that our relation symbols are exhaustive after all.

Next we check that the relation symbols are mutually exclusive. This comes from the fact
that each relation symbol encodes a separate possible ordering between the interval start
and end points. As it is not possible to have 2 different orderings of the same fixed elements,
the relation symbols must be mutually exclusive. For example, suppose that we have

(x1, x2)
<−−→ (y1, y2) (x1, x2)

o−→ (y1, y2)

This happens only if we have both

x1 < x2 < y1 < y2 x1 < y1 < x2 < y2

and so x2 < y1 < x2. Since < is irreflexive, this cannot happen.

Checking transitivity is quite routine, the main difficulty being the sheer amount of cases.
We will explicitly check the upper left quadrant in Table 2 and leave the rest for the diligent
reader. Fix (x1, x2), (y1, y2), (z1, z2) ∈ Int (L), which we will denote by x, y, z respectively,
then:

• Suppose that x <−−→ y, so x1 < x2 < y1 < y2. If y <mos−−−−→ z then in all cases we must
have y1 ≤ z1, hence x1 < x2 < z1 < z2 and x

<−−→ z. On the other hand, if y fd−−→ z
then we have z1 < y1 ≤ z2. This means that x2 < z2, restricting the possible relations
between x and z to x <mosd−−−−−→ z as expected.

• Suppose that x m−−→ y so x1 < x2 = y1 < y2. If y <mo−−−−→ z then in all cases we must
have y1 < z1 implying that x <−−→ z. If y s−→ z then y1 = z1 < z2 and x

m−−→ z

too. Finally, if y fd−−→ z then we have z1 < y1 < y2 ≤ z2, but x2 = y1 implying that
x

osd−−−→ z.

• Suppose that x o−→ y, in which case we have x1 < y1 < x2 < y2. Then if y <m−−−→ z we
see that x1 < x2 < z1 < z2 so x <−−→ z. If y o−→ z then x1 < z1 and x2 < z2, leaving
x

<mo−−−−→ z as the only options. If y s−→ z then x1 < y1 = z1 < x2 < y2 < z2 so x o−→ z

too. On the other hand if y fd−−→ z then z1 < x2 < z2 and hence x osd−−−→ z.

• Suppose that x s−→ y so x1 = y1 < x2 < y2. In the case that y <m−−−→ z then
x1 < x2 < z1 < z2, ie. x

<−−→ z. Similarly to before, if y o−→ z then x1 < z2 and
x2 < z2, so x <mo−−−−→ z. If y s−→ z then we get x1 = y1 = z1 < x2 < y2 < z2 so x s−→ z

too. For the last case, if y fd−−→ z then z1 < y1 = x1 < x1 < y2 ≤ z2 so x d−→ z.
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• Suppose that x f−→ y, then y1 < x1 < x2 = y2. If y <−−→ z then we get x1 < x2 = y2 <

z1 < z2 and so x <−−→ z. If y m−−→ z then similarly we have x1 < x2 = y2 = z1 < z2 so
x

m−−→ z. In the case that y o−→ z we can see that z1 < y2 = x2 < z2 so x osd−−−→ z. If
x

sd−−→ z then z1 < y1 = x1 < x2 < y2 ≤ z2, implying x d−→ z. Finally, if y f−→ z then
z1 < y1 < x1 < x2 = y2 = z2 and x f−→ z.

• Suppose that x d−→ y so y1 < x1 < x2 < y2. If y <m−−−→ z then we have x1 <

x1 < y2 ≤ z1 < z2 so x
<−−→ z. If y o−→ z then all we can say is that x2 < z2,

leaving us with x
<mosd−−−−−→ z. For the final case, if y sfd−−−→ z then we end up with

z1 ≤ y1 < x1 < x2 < y2 ≤ z2, so x d−→ z.

The rest of the cases can be checked similarly.

Finally, the different duality formulas hold by definition, so Int (L) |= TAIA.

Corollary 3.5. Allen’s interval algebras are satisfiable

So the theory is satisfiable and it includes the main class of models we are interested in.
Since the theory is relational and universal, it also means that we can pick out any subset
of intervals over a linear order and that will give us another model of TAIA, which agrees
with our intuition for interval algebras. We will also see later that every model of TAIA can
be seen as a substructure of Int (L) for some linear order L, which bodes very well for our
axiomatisation. But before we can see this, we need to develop some more machinery about
interval algebras.

Consider the function ϕ∼ : {0, 1}2 → {LAIA − formulas ϕ(I, J)} defined by

ϕ∼(0, 0)(I, J) = (I
s−→ J) ∨ (I

s←− J) ∨ (I = J)

ϕ∼(0, 1)(I, J) = (I
m←−− J)

ϕ∼(1, 0)(I, J) = (I
m−−→ J)

ϕ∼(1, 1)(I, J) = (I
f−→ J) ∨ (I

f←− J) ∨ (I = J)

This function takes as inputs tuples (n,m) with n,m ∈ {0, 1} and assigns them the LAIA-
formulas ϕ∼(n,m) with I and J as free variables. We want to use this function to quotient
out the disjoint union A+A in the following way:

(n, I) ∼ (m,J) ⇐⇒ A |= ϕ∼(n,m)(I, J)

Of course, first we need to figure out whether this gives an equivalence relation.

Proposition 3.6. The relation ∼ defined as above is an equivalence relation on A+A.

Proof. The relation is reflexive, since ϕ∼(n, n) always contains I = J as a disjunct, hence
A |= ϕ∼(n, n)(I, I) and (n, I) ∼ (n, I).
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The relation is also symmetric, since A |= ϕ∼(n,m)(I, J) if and only if A |= ϕ∼(m,n)(J, I).
To see this, notice that the formula ϕ∼(m,n) is given by taking the dual of the relation
symbols in ϕ∼(n,m). Hence (n, I) ∼ (m,J) if and only if (m,J) ∼ (n, I).

Showing the relation is transitive requires going through the 8 cases based on the possible
values of the triple (n,m, l) ∈ {0, 1}3 and showing that in each case, if A |= ϕ∼(n,m)(I, J)
and A |= ϕ∼(m, l)(J,K) then A |= ϕ∼(n, l)(I,K). This can be done by using the transitivity
axioms of interval algebras and considering every case. We go through a more complicated
case in the proof of Theorem 3.8, where the process is completely analogous, hence we skip
the proof here for brevity.

Definition 3.7. Given an Allen interval algebra A, we define the points of A as

Pts (A) =
A+A

∼

Consider the function ϕ< : {0, 1}2 → {LAIA − formulas ϕ(I, J)} defined by

ϕ<(0, 0)(I, J) = (I
<−−→ J) ∨ (I

m−−→ J) ∨ (I
o−→ J) ∨ (I

f←− J) ∨ (I
d←− J)

ϕ<(0, 1)(I, J) = ¬ (I
<←−− J) ∧ ¬ (I m←−− J)

ϕ<(1, 0)(I, J) = (I
<−−→ J)

ϕ<(1, 1)(I, J) = (I
<−−→ J) ∨ (I

m−−→ J) ∨ (I
o−→ J) ∨ (I

s−→ J) ∨ (I
d−→ J)

Using this, we may order the start and end points of intervals in A, turning Pts (A) into a
strict linear order.

Theorem 3.8. Given an Allen interval algebra A, the interpretation of the symbol < in
Pts (A) given by [(n, I)] < [(m,J)] ⇐⇒ A |= ϕ<(n,m)(I, J) is well-defined and turns A
into a model of TSLO.

Proof. First we must check that this ordering relation on Pts (A) is well-defined. For this
fix intervals I1, I2, J1, J2 ∈ A and n1, n2,m1,m2 ∈ {0, 1} and assume that

[(n1, I1)] = [(n2, I2)] < [(m2, J2)] = [(m1, J1)]

Then we must show that indeed, [(n1, I1)] < [(m1, J1)]. There are 16 distinct cases which
we cover in Table 3. In each of the cases, the possible relations I1 −→ J1 given in the last
column imply that A |= ϕ<(n1,m1)(I1, J1), so < is well-defined.

Now that we know that our definition of < does not depend on a choice of representative,
we need to check whether it satisfies TSLO:

• irreflexivity: Fix some element [(n, I)] ∈ Pts (A). Since the interval algebra relations
(along with equality) are mutually exclusive and I = I, no other relation can hold for
the pair (I, I). Regardless of the value of n, ϕ<(n, n)(I, I) does not include I = I as
a disjunct, so A ̸|= ϕ<(n, n)(I, I) and < is irreflexive.
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(n1, n2,m1,m2) Relation between I1, I2, J1, J2 Relation between I1, J1

(0, 0, 0, 0) I1
s=S−−−→ I2

<moFD−−−−−−→ J2
s=S−−−→ I1 I1

<moFD−−−−−−→ J1

(0, 0, 0, 1) I1
s=S−−−→ I2

<mosfd=OSFD−−−−−−−−−−−→ J2
m−−→ I1 I1

<moFD−−−−−−→ J1

(0, 0, 1, 0) I1
s=S−−−→ I2

<moFD−−−−−−→ J2
M−−→ I1 I1

<mosfd=OSFD−−−−−−−−−−−→ J1

(0, 0, 1, 1) I1
s=S−−−→ I2

<mosfd=OSFD−−−−−−−−−−−→ J2
f=F−−−−→ I1 I1

<mosfd=OSFD−−−−−−−−−−−→ J1

(0, 1, 0, 0) I1
M−−→ I2

<−−→ J2
s=S−−−→ I1 I1

<moFD−−−−−−→ J1

(0, 1, 0, 1) I1
M−−→ I2

<mosd−−−−−→ J2
m−−→ I1 I1

<moFD−−−−−−→ J1

(0, 1, 1, 0) I1
M−−→ I2

<−−→ J2
M−−→ I1 I1

<mosfd=OSFD−−−−−−−−−−−→ J1

(0, 1, 1, 1) I1
M−−→ I2

<mosd−−−−−→ J2
f=F−−−−→ I1 I1

<mosfd=OSFD−−−−−−−−−−−→ J1

(1, 0, 0, 0) I1
m−−→ I2

<moFD−−−−−−→ J2
s=S−−−→ I1 I1

<−−→ J1

(1, 0, 0, 1) I1
m−−→ I2

<mosfd=OSFD−−−−−−−−−−−→ J2
m−−→ I1 I1

<−−→ J1

(1, 0, 1, 0) I1
m−−→ I2

<moFD−−−−−−→ J2
M−−→ I1 I1

<mosd−−−−−→ J1

(1, 0, 1, 1) I1
m−−→ I2

<mosfd=OSFD−−−−−−−−−−−→ J2
f=F−−−−→ I1 I1

<mosd−−−−−→ J1

(1, 1, 0, 0) I1
f=F−−−−→ I2

<−−→ J2
s=S−−−→ I1 I1

<−−→ J1

(1, 1, 0, 1) I1
f=F−−−−→ I2

<mosd−−−−−→ J2
m−−→ I1 I1

<−−→ J1

(1, 1, 1, 0) I1
f=F−−−−→ I2

<−−→ J2
M−−→ I1 I1

<mosd−−−−−→ J1

(1, 1, 1, 1) I1
f=F−−−−→ I2

<mosd−−−−−→ J2
f=F−−−−→ I1 I1

<mosd−−−−−→ J1

Table 3: All cases to check if the ordering on Pts (A) is well defined.

• transitivity: To show transitivity we start by fixing intervals I, J,K ∈ A and assum-
ing that [(n, I)] < [(m,J)] and [(m,J)] < [(l,K)]. Then there are 8 cases based on
the values of n,m, k ∈ {0, 1}, all of which are considered in Table 4 up to Table 11.

• trichotomy: Fix two I, J ∈ A. To check the trichotomy condition holds, we need to
show that for all n,m ∈ {0, 1} we have

A |= ϕ<(n,m)(I, J) ∨ ϕ∼(n,m)(I, J) ∨ ϕ<(m,n)(J, I)

There are 3 cases that we must deal with separately to show this:

– First we consider [(0, I)] and [(0, J)]. The formula ϕ<(0, 0)(I, J) is a disjunction
5 of our basic relations and ϕ<(0, 0)(J, I) the disjunction of its duals. Then
ϕ∼(0, 0)(I, J) is a disjunction of the 2 missing relations and equality. Hence by
exhaustiveness of the interval algebra relations and equality, it must be the case
that A |= ϕ<(0, 0)(I, J) ∨ ϕ∼(0, 0)(I, J) ∨ ϕ<(0, 0)(J, I)

– Next, we consider [(0, I)] and [(1, J)]. Notice that the formula ϕ<(0, 1)(I, J) is
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3 Axiomatisation of Interval Algebras

the negation of ϕ∼(0, 1)(I, J) ∨ ϕ<(1, 0)(J, I), hence by the law of the excluded
middle, the triple disjunction must hold.

– Finally we consider [(1, I)] and [(1, J)]. The situation here is similar to the
n = m = 0 case, since ϕ<(1, 1)(I, J) is a disjunction of 5 basic relations, then
ϕ<(1, 1)(J, I) is the disjunction of its duals and peq(1, 1)(I, J) is the disjunction
of the 2 missing relations plus equality.

When (n,m) = (1, 0), since ∼ is symmetric, we know that

A |= ϕ∼(1, 0)(I, J) ⇐⇒ A |= ϕ∼(0, 1)(J, I)

which allows us to reduce to the second case above.

In general, this will not be interpretable in the interval algebra A, since we need to take
the disjoint union of two sets which is not a priori available in first order logic. However,
provided that |A| ≠ 1, then it is possible to define quotient A2 by an appropriate definable
equivalence relation, something along the lines of

ϕ(I, J) = ¬(I = J)

So then we would encode (0, I) ∈ A + A as the pair (I, I) ∈ A2 and (1, I) ∈ A + A as
(I, J) ∈ A2 where J is any interval different from I. Modifying the above definitions to use
this encoding would then show that the strict linear order Int (A) can be interpreted in A.
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3 Axiomatisation of Interval Algebras

I → J J → K I → K I → J J → K I → K I → J J → K I → K

< < < o < < D < < moFD
< m < o m < D m oFD
< o < o o < mo D o oFD
< F < o F < mo D F D
< D < o D < moFD D D D

m < < F < <
m m < F m m
m o < F o o
m F < F F F
m D < F D D

Table 4: The transitivity table for the [(0, I)] < [(0, J)] and [(0, J)] < [(0,K)] case. For
this to imply [(0, I)] < [(0,K)] we need the I → K columns to all contain a subset of the
string < moFD.
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I → J J → K I → K I → J J → K I → K I → J J → K I → K

< < < o < < D < < moFD
< m < o m < D m oFD
< o < o o < mo D o oFD
< s < o s o D s oFD
< f < mosd o f osd D f OSD
< d < mosd o d osd D d concur
< = < o = o D = D
< O < mosd o O concur D O OSD
< S < o S oFD D S D
< F < o F < mo D F D
< D < o D < moFD D D D

m < < F < <
m m < F m m
m o < F o o
m s m F s o
m f osd F f f = F
m d osd F d osd
m = m F = F
m O osd F O OSD
m S m F S D
m F < F F F
m D < F D D

Table 5: The transitivity table for the [(0, I)] < [(0, J)] and [(0, J)] < [(1,K)] case. For
this to imply [(0, I)] < [(1,K)] we need the I → K columns to all contain a subset of the
string < mosfd = OSFD. Recall that concur is shorthand for osfd = OSFD
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I → J J → K I → K

< < <
m < <
o < <
s < <
f < <
d < <
= < <
O < < moFD
S < < moFD
F < <
D < < moFD

Table 6: The transitivity table for the [(0, I)] < [(1, J)] and [(1, J)] < [(0,K)] case. For
this to imply [(0, I)] < [(0,K)] we need the I → K columns to all contain a subset of the
string < mofD.

I → J J → K I → K I → J J → K I → K I → J J → K I → K

< < < f < < S < < moFD
< m < f m m S m oFD
< o < f o osd S o oFD
< s < f s d S s s = S
< d < mosd f d d S d fdO

m < < d < < F < <
m m < d m < F m m
m o < d o < mosd F o o
m s m d s d F s o
m d osd d d d F d osd

o < < = < < D < < moFD
o m < = m m D m oFD
o o < mo = o o D o oFD
o s o = s s D s oFD
o d osd = d d D d concur
s < < O < < moFD
s m < O m oFD
s o < mo O o concur
s s s O s fdO
s d d O d fdO

Table 7: The transitivity table for the [(0, I)] < [(1, J)] and [(1, J)] < [(1,K)] case. For
this to imply [(0, I)] < [(1,K)] we need the I → K columns to all contain a subset of the
string < mosfd = OSFD. Recall that concur is shorthand for osfd = OSFD.
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I → J J → K I → K

< < <
< m <
< o <
< F <
< D <

Table 8: The transitivity table for the [(1, I)] < [(0, J)] and [(0, J)] < [(0,K)] case. For
this to imply [(1, I)] < [(0,K)] we need the I → K columns to all contain <.

I → J J → K I → K

< < <
< m <
< o <
< s <
< f < mosd
< d < mosd
< = <
< O < mosd
< S <
< F <
< D <

Table 9: The transitivity table for the [(1, I)] < [(0, J)] and [(0, J)] < [(1,K)] case. For
this to imply [(1, I)] < [(1,K)] we need the I → K columns to all contain a subset of the
string < mosd.

I → J J → K I → K

< < <
m < <
o < <
s < <
d < <

Table 10: The transitivity table for the [(1, I)] < [(1, J)] and [(1, J)] < [(0,K)] case. For
this to imply [(1, I)] < [(0,K)] we need the I → K columns to all contain <.
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I → J J → K I → K I → J J → K I → K I → J J → K I → K

< < < o < < d < <
< m < o m < d m <
< o < o o < mo d o < mosd
< s < o s o d s d
< d < mosd o d osd d d d

m < < s < <
m m < s m <
m o < s o < mo
m s m s s s
m d osd s d d

Table 11: The transitivity table for the [(1, I)] < [(1, J)] and [(1, J)] < [(1,K)] case. For
this to imply [(1, I)] < [(1,K)] we need the I → K columns to all contain a subset of the
string < mosd.
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4 The Points-Intervals Adjunction

4 The Points-Intervals Adjunction

Definition 4.1. Given a theory T over language L, we denote by Mod (L,T) the category
with objects the models of T and arrows the L-embeddings.

Remark. For brevity, we introduce the notation:

SLO := Mod (LSLO,TSLO) and AIA := Mod (LAIA,TAIA)

The Yoneda point of view from category theory tells us that the action of a functor on maps
is equally as important, if not more, than its action on objects. The next two theorems will
tell us how to extend the interval and points constructions to acting on maps.

Theorem 4.2. We can turn Int (−) into a functor

Int (−) : SLO→ AIA

by sending arrows f :M → N in SLO to Int (f) : Int (M)→ Int (N) defined by

Int (f) (x1, x2) = (f(x1), f(x2))

Proof. First we show that for a LSLO-embedding f : L → M between strict linear orders
L,M , the mapping Int (f) gives a an LAIA-embedding. Consider the relations in LAIA,
and their interpretations in Int (L): all of the relations are defined by quantifier-free LSLO-
formulas, whose truth value must be preserved under LSLO embeddings like f . Since Int (f)
simply applies f pointwise, Int (f) must preserve the truth value of the relation symbols in
LAIA, in other words, it is an LAIA-embedding.

Now we just need to check that Int (−) satisfies the two functor axioms:

• preserves identity arrows: Fix some strict linear order L and some interval (x, y) ∈
Int (L), then

Int (idL) (x, y) = (idL(x), idL(y)) = (x, y)

• respects arrow composition: Fix three strict linear orders L,M,N along with
arrows f : L→M , g :M → N and some interval (x, y) ∈ Int (L), then

Int (g ◦ f) (x, y) = (g ◦ f(x), g ◦ f(y))
= (g(f(x)), g(f(y)))

= Int (g) (Int (f) (x, y))
= Int (g) ◦ Int (f) (x, y)
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Theorem 4.3. We can turn Pts (−) into a functor

Pts (−) : AIA→ SLO

by sending arrows f : A→ B in AIA to Pts (f) : Pts (A)→ Pts (B) defined by

Pts (f) (0, I) = (0, f(I)) and Pts (f) (1, I) = (1, f(I))

Proof. Given an arrow f : A→ B, we must check that Pts (f) is a well defined map, and that
it is an LSLO-embedding. These facts both follow by noticing that f is an LAIA-embedding,
so it preserves the truth of quantifier-free LAIA-formulas, so

(n, I) ∼ (m,J) ⇐⇒ A |= ϕ∼(n,m)(I, J)

⇐⇒ A |= ϕ∼(n,m)(f(I), f(J))

⇐⇒ (n, f(I)) ∼ (m, f(J))

and similarly

[(n, I)] < [(m,J)] ⇐⇒ A |= ϕ<(n,m)(I, J)

⇐⇒ A |= ϕ<(n,m)(f(I), f(J))

⇐⇒ Pts (f) ([(n, I)]) < Pts (f) ([(m,J)])

for any two (n, I), (m,J) ∈ A+A, since ϕ∼(n,m) and ϕ<(n,m) are always quantifier-free.

Next, to see that Pts (−) satisfies the functor axioms:

• preserves identity arrows: Fix some interval algebra A and some element [(n, I)] ∈
Pts (A). Then notice that

Pts (idA) ([(n, I)]) = [(n, idA(I))] = [(n, I)] = idPts(A)([(n, I)])

Hence Pts (idA) = idPts(A).

• respects arrow composition: Fix interval algebras A,B,C along with arrows f :
A→ B, g : B → C. Then for all elements [(n, I)] ∈ Pts (A):

Pts (g ◦ f) ([(n, I)]) = [(n, g ◦ f(I))]
= [(n, g(f(I)))]

= Pts (g) (Pts (f) ([n, I]))
= Pts (g) ◦ Pts (f) ([n, I])

Hence Pts (g ◦ f) = Pts (g) ◦ Pts (f) as expected.

Remark. From now on, given an interval algebra A and interval I ∈ A, we will use I− :=
[(0, I)] and I+ := [(1, I)] to refer to the respective elements of Pts (A).
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As we will see now, these two functors are adjoints, which indicates a very special and close
connection between strict linear orders and interval algebras.

Theorem 4.4. Pts (−) is left adjoint to Int (−).

Proof. We will prove this through the Hom-Set definition of an adjunction, so we wish to
find an isomorphism SLO(Pts (A) , L) ∼= AIA(A, Int (L)) which is natural in both A and L.

We start by defining the forward map

ϕA,L : SLO(Pts (A) , L)→ AIA(A, Int (L))

which sends an LSLO-embedding f : Pts (A)→ L to the LAIA-embedding

ϕA,L(f) : A→ Int (L) sending I 7→ (f(I−), f(I+))

To see this is a LAIA-embedding, by duality, it suffices to consider the i−→ relations for
i ∈ {<,m, o, s, f, d}, so we fix two intervals I, J ∈ A and then:

I
<−−→ J ⇐⇒ I+ < J−

⇐⇒ f(I+) < f(J−)

⇐⇒ ϕA,L(f)(I)
<−−→ ϕA,L(f)(J)

I
m−−→ J ⇐⇒ I+ = J−

⇐⇒ f(I+) = f(J−)

⇐⇒ ϕA,L(f)(I)
m−−→ ϕA,L(f)(J)

I
o−→ J ⇐⇒ I− < J− < I+ < J+

⇐⇒ f(I−) < f(J−) < f(I+) < f(J+)

⇐⇒ ϕA,L(f)(I)
o−→ ϕA,L(f)(J)

I
s−→ J ⇐⇒ I− = J− < I+ < J+

⇐⇒ f(I−) = f(J−) < f(I+) < f(J+)

⇐⇒ ϕA,L(f)(I)
s−→ ϕA,L(f)(J)

I
f−→ J ⇐⇒ J− < I− < I+ = J+

⇐⇒ f(J−) < f(I−) < f(I+) = f(J+)

⇐⇒ ϕA,L(f)(I)
f−→ ϕA,L(f)(J)

I
d−→ J ⇐⇒ J− < I− < I+ < J+

⇐⇒ f(J−) < f(I−) < f(I+) < f(J+)

⇐⇒ ϕA,L(f)(I)
d−→ ϕA,L(f)(J)

Next, we define the inverse map

ψA,L : AIA(A, Int (L))→ SLO(Pts (A) , L)

which sends an LAIA-embedding g : A→ Int (L) to the LSLO-embedding given by

ψA,L(f) : Pts (A)→ L sending (n, I) 7→ (let (x0, x1) := g(I) in xn)

Now, we need to ensure these maps are well defined and that they are indeed LSLO-
embeddings. To check that ψA,L(f) is well defined, we fix intervals I, J ∈ A and get three
cases to consider. In all of these cases we let f(I) = (a, b) and f(J) = (c, d):
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• If (0, I) ∼ (0, J) then we must have

A |= (I
s−→ J) ∨ (I

s←− J) ∨ (I = J)

Since f is an LAIA-embedding, this means that

Int (L) |= (f(I)
s−→ f(J)) ∨ (f(I)

s←− f(J)) ∨ (f(I) = f(J))

Equivalently, the above says that a = c, so ψA,L(f)(I−) = a = c = ψA,L(f)(J−).

• If (0, I) ∼ (1, J) then the following is true

A |= I
m←−− J

Which implies that
Int (L) |= f(I)

m←−− f(J)

And this happens exactly when a = d, meaning ψA,L(f)(I−) = a = d = ψA,L(f)(J+).
By symmetry of our equivalence relation this also deals with the (1, I) ∼ (0, J) case.

• If (1, I) ∼ (1, J) then

A |= (I
f−→ J) ∨ (I

f←− J) ∨ (I = J)

And so
Pts (L) |= (f(I)

f−→ f(J)) ∨ (f(I)
f←− f(J)) ∨ (f(I) = f(J))

This implies that b = d so ψA,L(f)(I+) = b = d = ψA,L(f)(J+) as needed.

To show monotonicity of ψA,L(f) we get 4 distinct cases. Assuming again that f(I) = (a, b)
and f(J) = (c, d):

• If I− < J− then we must have

A |= (I
<−−→ J) ∨ (I

m−−→ J) ∨ (I
o−→ J) ∨ (I

f←− J) ∨ (I
d←− J)

Since f is an LAIA-embedding, this means that

Int (L) |=(f(I)
<−−→ f(J)) ∨ (f(I)

m−−→ f(J)) ∨ (f(I)
o−→ f(J))

∨ (f(I)
f←− f(J)) ∨ (f(I)

d←− f(J))

So the ordering of the elements a, b, c, d must be one of:

a < b < c < d a < b = c = d a < c < b < d

a < c < d = b a < c < d < b

And in all cases ψA,L(f)(I−) = a < c = ψA,L(f)(J−).
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• If I− < J+ then we must have

A |= ¬ (I <←−− J) ∧ ¬ (I m←−− J)

Since f is an LAIA-embedding, this means that

Int (L) |= ¬ (f(I) <←−− f(J)) ∧ ¬ (f(I) m←−− f(J))

This is the case with the most orderings of a, b, c, d, having one of:

a < b < c < d a < b = c < d a < c < b < d a = c < b < d

c < a < b = d c < a < b < d a = c < b = d c < a < d < b

a = c < d < b a < c < d = b a < c < d < b

In all cases though, ψA,L(f)(I−) = a < d = ψA,L(f)(J+).

• If I+ < J− then we must have
A |= I

<−−→ J

Since f is an LAIA-embedding, this means that

Int (L) |= f(I)
<−−→ f(J)

So in L we must have a < b < c < d, and so ψA,L(f)(I+) = b < c = ψA,L(f)(J−).

• If I+ < J+ then we must have

A |= (I
<−−→ J) ∨ (I

m−−→ J) ∨ (I
o−→ J) ∨ (I

s−→ J) ∨ (I
d−→ J)

Since f is an LAIA-embedding, this means that

Int (L) |=(f(I)
<−−→ f(J)) ∨ (f(I)

m−−→ f(J)) ∨ (f(I)
o−→ f(J))

∨ (f(I)
s−→ f(J)) ∨ (f(I)

d−→ f(J)

This gives 5 possible orderings of a, b, c, d in L:

a < b < c < d a < b = c = d a < c < b < d

a = c < b < d c < a < b < d

As b < d in all of these, the ordering is preserved by ψA,L(f).

We expect ϕA,L and ψA,L to be inverses, which is confirmed by the following:

• Pick any f : Pts (A)→ L and [(n, I)] ∈ Pts (A), then

ψA,L (ϕA,L(f)) ([(n, I)]) = (let (x0, x1) := ϕA,L(f)(I) in xn)
= (let (x0, x1) := (f(I−), f(I+)) in xn)
= f([n, I])
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• Pick any g : A→ Int (L) and I ∈ A, then

ϕA,L (ψA,L(g)) (I) = (ψA,L(g)(I−), ψA,L(g)(I+)) = g(I)

Finally, we just have to check naturality of our isomorphism ϕA,L. So pick a LAIA-embedding
f : A → B and a LSLO-embeddings g : L → M , we need to show the following diagram
commutes

SLO(Pts (B) , L) SLO(Pts (A) , L) SLO(Pts (A) ,M)

AIA(B, Int (L)) AIA(A, Int (L)) AIA(A, Int (M))

SLO(Pts(f),L)

AIA(f,Int(L))

ϕB,L

AIA(A,Int(g))

SLO(Pts(A),g)

ϕA,MϕA,L

We do this by checking both squares individually:

• left square: Pick some h : SLO(Pts (B) , L) and I ∈ A, then

ϕA,L(SLO(Pts (f) , L)(h))(I) = ϕA,L(h ◦ Pts (f))(I)
= (h(Pts (f) (I−)), h(Pts (f) (I+)))
= (h(f(I)−), h(f(I)+))

= ϕB,L(h)(f(I))

= ϕB,L(h) ◦ f(I)
= AIA(f, Int (L))(ϕB,L(h))(I)

• right square: Pick some h : SLO(Pts (A) , L) and I ∈ A, then

ϕA,M (SLO(Pts (A) , g)(h))(I) = ϕA,M (g ◦ h)(I)
= (g(h(I−)), g(h(I+)))

= (g(h(I−)), g(h(I+)))

= Int (g) (h(I−), h(I+))
= Int (g) (ϕA,L(h)(I))

= AIA(A, Int (g))(ϕA,L(h))(I)

In order to get a bit more familiar with these constructions, it can be beneficial to see why
Pts (−) is not right adjoint to Int (−), that is, in general it is not true

AIA(Int (L) , A) ∼= SLO(L,Pts (A))
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4 The Points-Intervals Adjunction

for all strict linear orders L and interval algebras A. For example, consider the interval
algebra A given by the set A = {I, J,K} with the relations between intervals I o−→ J, J

m−−→
K, I

<−−→ K. Applying the Pts (−) construction to A gives a linear order with 5 elements,
as can be seen in Fig. 1. We will also need the linear order L = {1 < 2 < 3}, which has 3
intervals, as seen in Fig. 2. Now, an order preserving embedding f : L → Pts (A) simply
needs to pick 3 distinct points in Pts (A). There are

(
5
3

)
= 10 possible ways of picking 3

distinct points out of Pts (A), so we see that |SLO(L,Pts (A))| = 10. On the other hand,
an embedding of interval algebras f : Int (L) → A must pick out two intervals in A which
meet (these will be the images of (1, 2) and (2, 3)) with the constraint that the “union” of
these two intervals exists in A. In this specific case, our only option is that f((1, 2)) = J
and f((2, 3)) = K, but there is no interval which is started by J and finished by K, so
there is nowhere to map (1, 3) to. This means that AIA(Int (L) , A) = ∅, so there can be
no isomorphism between this and SLO(L,Pts (A)).

I

J

K

I− J− I+ J+ = K− K+

A

Pts (A)

Figure 1: An example of the Pts (−) construction.

1 2 3

(1, 2) (2, 3)

(1, 3)

L

Int (L)

Figure 2: An example of the Int (−) construction

4.1 Characterising the Unit and Counit

Given an adjunction, it is always helpful to compute the associated unit and counit natural
transformations. In our case, the unit is a natural transformation η : idAIA → Int (Pts (−))
whose component at an interval algebra A is given by ηA = ϕA,Pts(A)(idPts(A)). Computing
this, we get the map

ηA : A→ Int (Pts (A)) sending I 7→ (I−, I+)
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4 The Points-Intervals Adjunction

Recall that each component of the unit ηA is an arrow in AIA, so it must be an embedding.
This means that every interval algebra A can be seen as a substructure of the intervals
Int (L) for some linear order L, namely for L = Pts (A).

Dually, the counit here is a natural transformation ϵ : Pts (Int (−))→ idSLO where each of
its components is given by ϵL = ψInt(L),L(idInt(L)). Fixing some L and working through this
construction, we get

ϵL : Pts (Int (L))→ L sending (a, b)− 7→ a and (a, b)+ 7→ b

Proposition 4.5. The counit component at a strict linear order L, ϵL, is an isomorphism
if and only if |L| ≠ 1.

Proof. First, suppose that |L| = 1, so L = {a}. Then Int (L) = ∅ as we do not allow empty
intervals and so Pts (Int (L)) = ∅ too. As such, ϵL cannot be an isomorphism.

For the converse, notice that ϵL is a map in SLO, hence it must be injective. Provided that
|L| ≠ 1 then it also turns out to be surjective: fix some a ∈ L, there must be at least one
distinct b ∈ L. Now either a < b, so (a, b) is a valid interval over L and then ϵL((a, b)−) = a.
Alternatively, b < a, so (b, a) is an interval in Int (L) and ϵL((b, a)+) = a

As for the unit, it will give us an isomorphism when our interval algebra already has all
possible intervals. More precisely, we say that an interval algebra has all possible intervals
if it satisfies the following sentence

ϕfull =
(
∀I, ∀J, (I <−−→ J)→ ∃K, (I m−−→ K) ∧ (K

m−−→ J)
)

∧
(
∀I, ∀J, (I m−−→ J)→ ∃K, (I s←− K) ∧ (K

f−→ J)
)

∧
(
∀I, ∀J, (I o−→ J)→ ∃K, (I f←− K) ∧ (K

s−→ J)
)

∧
(
∀I, ∀J, (I s−→ J)→ ∃K, (I m−−→ K) ∧ (K

f−→ J)
)

∧
(
∀I, ∀J, (I f−→ J)→ ∃K, (I m←−− K) ∧ (K

s−→ J)
)

∧
(
∀I, ∀J, (I d−→ J)→ ∃K, (I m←−− K) ∧ (K

s−→ J)
)

The above formula does not specify it, but it can be shown that the K being quantified over
must actually be unique. For example, fix some I and J such that I <−−→ J and let there
be two K1,K2 such that I m−−→ Ki

m−−→ J . Then we have K1
m←−− I

m−−→ K2, implying that
K1

s=S−−−→ K2. If K1
s−→ K2 then K1

s−→ K2
m−−→ J and our axioms mean that K1

<−−→ J ,
which is a contradiction as the interval algebra relations are mutually exclusive. Similarly
we can show that K1

s←− K2 cannot happen, leaving us with the only option of K1 = K2.
Similar arguments show the uniqueness of K in the other cases.
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4 The Points-Intervals Adjunction

Proposition 4.6. The unit component at an interval algebra A, ηA, is an isomorphism if
and only if A |= ϕfull.

Proof. First, suppose that ηA is an isomorphism. To show that A |= allints we fix two
intervals I, J ∈ A. Now we have to consider 6 cases:

• If I <−−→ J then in Int (Pts (A)) we must have I− < I+ < J− < J+. This means the
following are all valid intervals

ηA(I) = (I−, I+)
m−−→ (I+, J−)

m−−→ (J−, J+) = ηA(J)

so taking K = η−1
A ((I+, J−)) we see that the first conjunct holds.

• If I m−−→ J then I− < I+ = J− < J+, hence taking K = η−1
A ((I−, J+)) shows that the

second conjunct holds.

• If I o−→ J then I− < J− < I+ < J+ and we can take K = η−1
A ((J−, I+)) to prove the

third conjunct.

• If I s−→ J then I− = J− < I+ < J+, so taking K = η−1
A ((I+, J+)) proves the fourth

conjunct.

• If I f−→ J then J− < I− < I+ = J+ so the choice K = η−1
A ((J−, I−)) gives a proof of

the penultimate conjunct.

• If I d−→ J then J− < I− < I+ < J+ and if we let K = η−1
A ((J−, I−)) then we see the

last conjunct holds too.

As all conjuncts hold, this implies that A |= ϕfull as expected.

Next, suppose that we have an interval algebra A such that A |= ϕfull and fix two intervals
I, J ∈ A. Since I and J are arbitrary, it will suffice to consider the basic non-dual relations.

• If I <−−→ J then we get some K1 which is met by I and meets J . Then we can glue I
and K1 to get K2 and similarly we glue K1 and J to get K3. Finally, gluing K2 and
J gives us K4. This gives the following picture

I− I+ J− J+

I JK1

K2

K3

K4
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4 The Points-Intervals Adjunction

Then the unit ηA surjects on all intervals over the start and end points of I, J :

(I−, J−) = ηA(K2) (I−, J+) = ηA(K4)

(I+, J−) = ηA(K1) (I+, J+) = ηA(K3)

• If I m−−→ J then we can glue I and J to get K, yielding the following

I− I+ = J− J+

I J

K

The unit also surjects on all valid intervals over the start and end poits of I, J :

(I−, J−) = ηA(J) (I−, J+) = ηA(K) (I+, J+) = ηA(J)

In this case there are only 3 in this case since I+ = J− so (I+, J−) is not a valid interval
over Pts (A).

• If I o−→ J then first we intersect I and J giving K1. Similarly we can intersect K1

with I and J giving K2 and K3 respectively. Finally gluing I and K3 together gives
K4.

I− J− I+ J+

I

J

K3K2 K1

K4

Similar to the I <−−→ J case, the unit is then surjective onto the 4 possible intervals
involving I−, I+, J−, J+.

• When I s−→ J we can intersec I and J to get K

I− = J− I+ J+

I

J

K
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4 The Points-Intervals Adjunction

We get 4 intervals over the start and end points of I and J , which are given by

(I−, J+) = ηA(J) (I−, I+) = ηA(I) (I+, J+) = ηA(K)

• The I f−→ J follows similarly to the previous case, by intersecting I and J to get K

J− I− I+ = J+

I

J

K

And again the 3 valid intervals over I−, I+, J−, J+ all lie in the image of the unit

(J−, I−) = ηA(K) (J−, I+) = ηA(J) (I−, J+) = ηA(I)

• Finally there is the I d−→ J case. By ϕfull we can get the initial segment K1 of J which
meets I. Then we intersect K1 and J to get K2, which in turn we intersect with I to
get K3. Finally gluing K1 and I gives K4.

J− I− I+ J+

J

IK1 K3

K2

K4

This gives 4 intervals which all lie in the image of the unit

(J−, I−) = ηA(K1) (J−, I+) = ηA(K4)

(I−, J+) = ηA(K2) (I+, J+) = ηA(K3)

This is sufficient to see that ηA is surjective. After all fix some arbitrary interval

([(n, I)], [(m,J)]) ∈ Int (Pts (A))

If I = J then we must have

([(n, I)], [(m,J)]) = (I−, I+) = ηA(I)
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4 The Points-Intervals Adjunction

If I ̸= J , then after possibly swapping I, J we may assume I <mosfd−−−−−−→ J , which brings us
to one of the cases handled above, where all intervals involing I−, I+, J− and J+ were in the
image of the unit.

Corollary 4.7. There exists an equivalence of categories between the full subcategory of
strict linear orders L with |L| ≠ 1 and the full subcategory of interval algebras satisfying
ϕfull.

Proof. An adjunction can always be restricted to an equivalence of categories by considering
the full subcategories where the unit and counit are isomorphisms. [14]
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5 The Model Theory of Interval Algebras

5 The Model Theory of Interval Algebras

5.1 The Fraïssé Class of Finite Interval Algebras

We start by considering the class FIA of finite interval algebras. From our work in Sec-
tion 2.2.1, we know that FIA satisfies the HP, since TAIA is universal and relational. LAIA
is also finite, so FIA must be EC.

To prove that FIA has the JEP and AP, notice that Pts (−) must send finite interval
algebras to finite strict linear orders. In fact, given an interval algebra A, |Pts (A) | ≤ 2|A|
since Pts (A) is a quotient of A + A. Similarly, Int (−) must also send finite strict linear
orders to finite interval algebras as given a strict linear order L, |Int (L) | =

(|L|
2

)
. Using this

fact, we will be able to reduce the proof of these properties to the proof that FCh satisfies
them.

Proposition 5.1. The class FIA has the joint embedding property.

Proof. Given two finite interval algebras A and B, we use the JEP of strict linear orders to
get the following diagram in SLO

Pts (A)

Ω

Pts (B)

f

g

Then, applying Int (−) and using the adjunction unit η, we get

A Int (Pts (A))

Int (Ω)

B Int (Pts (B))

Int(f)

Int(g)

ηB

ηA

And the composites Int (f) ◦ ηA and Int (g) ◦ ηB along with the interval algebra Ω give us
the joint embedding of A and B.

Proposition 5.2. The class FIA has the amalgamation property.
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5 The Model Theory of Interval Algebras

Proof. Suppose we have the following diagram in AIA

A

C

B

f

g

Applying Pts (−) takes us to SLO, at which point we can use the AP of strict linear orders
to get the commuting square

Pts (A)

Pts (C) Ω

Pts (B)

Pts(f)

Pts(g)

f ′

g′

Now going back to AIA gives the commuting diagram

A Int (Pts (A))

C Int (Pts (C)) Int (Ω)

B Int (Pts (B))

Int(Pts(f))

Int(Pts(g))

Int(f ′)

Int(g′)

ηB

ηA

ηC

f

g

For the AP of the finite interval algebras, we are only interested in the outer square. The
necessary maps are then Int (f ′) ◦ ηA and Int (g′) ◦ ηB, both mapping into Int (Ω).

Theorem 5.3. The Fraïssé limit of FIA is Int (Q)

Proof. To show that the Fraïssé limit of the finite interval algebras is Int (Q), it suffices to
show that Age(Int (Q)) = FIA and that Int (Q) is homogeneous.

To see that Age(Int (Q)) = FIA, prove that both sides include into the other. Suppose
we have some finitely generated LAIA-substructure A ⊂ Int (Q). Since TAIA is universal,
A must also be an interval algebra. Furthermore, since LAIA is relational, A must also be
finite, so A ∈ FIA. For the converse inclusion, consider some finite interval algebra A, it
must embed into Int (Pts (A)), which in turn embeds into Int (Q) (since Pts (A) is finite,
hence embeddable into Q). Restricting these composition of these embeddings onto their
image in Int (Q) then gives the needed isomorphism.
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5 The Model Theory of Interval Algebras

As for why Int (Q) is homogeneous, fix two LAIA-substructures A,B ⊆ Int (Q), along with
some LAIA-isomorphism f : A → B. In essence we have the following diagram of interval
algebras, where i and j are the inclusions into Int (Q):

Int (Q) Int (Q)

A B
f

i j

Applying Int (−) to move to linear orders, we can postcompose Pts (i) and Pts (j) with the
counit at Q to realise Pts (A) and Pts (B) as LSLO-substructures of Q. Now, Pts (f) is still an
isomorphism as these are preserved by functors, and using the fact that Q is homogeneous,
we can extend Pts (f) to an isomorphism g, giving the commuting diagram

Q Q

Pts (Int (Q)) Pts (Int (Q))

Pts (A) Pts (B)
Pts(f)

Pts(i)

ϵQ ϵQ

Pts(j)

g

Finally, we apply Int (−) to bring us back to interval algebras, where we have the following
diagram:

Int (Q) Int (Q)

Int (Q) Int (Pts (Int (Q))) Int (Pts (Int (Q))) Int (Q)

A Int (Pts (A)) Int (Pts (B)) B

A B

Int(Pts(f))

Int(Pts(i))Int(Pts(i))

Int(ϵQ) Int(ϵQ)

Int(g)

ηA ηB

ηInt(Q)ηInt(Q)

idInt(Q)idInt(Q)

f

i

ηA

idA

j

ηB

idB
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5 The Model Theory of Interval Algebras

Although not obvious at first, the above diagram commutes, to check this we look at all the
"irreducible components" individually:

• The middle rectangle in red commutes since it already commuted for linear orders.

• The top triangles commute by the triangle identities of our adjunction.

• The squares to the left, right and bottom of the red rectangle commute by naturality
of the unit.

• The bottom triangles commute since the identity is the unit of composition.

Chasing around the outside of the diagram, we see that

Int (g) ◦ idInt(Q) ◦ i ◦ idA = idInt(Q) ◦ j ◦ idB ◦ f

Simplifying shows that Int (g) ◦ i = j ◦ f . Now, since g was an isomorphism, so is Int (g), so
we have successfully extended f to an automorphism of Int (Q).

5.2 Stable and NIP Interval Agebras

The question of stability for interval algebras is answered similarly to linear orders:

Theorem 5.4. An interval algebra A is stable if and only if it is finite.

Proof. Suppose that A is an interval algebra and consider the formula

ϕlex(I, J) = (I
<−−→ J) ∨ (I

m−−→ J) ∨ (I
o−→ J) ∨ (I

s−→ J) ∨ (I
f←− J) ∨ (I

d←− J)

The above formula takes the elements of A and lexicographically orders them, by first
comparing the start times of each interval, and then the end times if the start times coincide.
As a result, the formula ϕlex gives the structure of a strict linear order to the elements of A:

• irreflexivity: Fix some interval I ∈ A, then I = I. Since the relational symbols of
interval algebras along with equality are all mutually exclusive, neither I i−→ I nor
I

i←− I can hold for any i ∈ {<,m, o, s, f, d}. This means A |= ¬ϕlex(I, I) so ϕlex is
irreflexive.

• transitivity: Fix three intervals I, J,K ∈ A and suppose that A |= ϕlex(I, J) and
A |= ϕlex(J,K). Since ϕlex consists of the disjunction of 6 relational symbols, there are
36 cases which would lead to this situation. Considering each of these cases individually
and looking up our transitivity axioms for interval algebras, we can find all possible
relations between I and K, which is detailed in Table 12. In all of these cases, we
must still have A |= ϕlex(I,K), so ϕlex is transitive.

• trichotomy: Fix two intervals I, J ∈ A. First notice that A |= ϕlex(J, I) if and only
if we have

A |= (I
<←−− J) ∨ (I

m←−− J) ∨ (I
o←− J) ∨ (I

s←− J) ∨ (I
f−→ J) ∨ (I

d−→ J)
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5 The Model Theory of Interval Algebras

which is the same as taking the dual of all the relation symbols in ϕlex(I, J). Hence
A |= ϕlex(I, J) ∨ (I = J) ∨ ϕlex(J, I) is equivalent to saying that the interval algebra
relations are exhaustive, which is one of our axioms. Hence the strict ordering given
by ϕlex is linear.

I −→ J J −→ K I −→ K I −→ J J −→ K I −→ K

< < < s < <
< m < s m <
< o < s o < mo
< s < s s s
< F < s F < mo
< D < s D < moFD

m < < F < <
m m < F m m
m o < F o o
m s m F s o
m F < F F F
m D < F D D

o < < D < < moFD
o m < D m oFD
o o < mo D o oFD
o s o D s oFD
o F < mo D F D
o D < moFD D D D

Table 12: Cases for transitivy of ϕlex.

Now for any finite interval algebra A, all strict linear orders interpretable in A will be
bounded in size by |A|k for some k ∈ N. In particular, all such linear orders must be finite,
so A is stable.

For the converse, suppose A is stable. Using ϕlex we can linearly order all the elements of
A, but as A is stable this linear order must be finite, hence A must be finite.

Restricting our attention to interval algebras with all possible intervals, we see they all have
the NIP, much like their underlying linear orders.

Theorem 5.5. For any linear order L, the interval algebra Int (L) has the NIP.

Proof. Suppose that Int (L) has the IP, so there is some formula ϕ(x; y) which has the IP.
Let the IP of ϕ(x; y) be realised by the model A |= Th(Int (L)) and sequences (ai)i<ω and
(bI)I⊆ω. Since finite interval algebras are stable and hence NIP, we may assume that L is
infinite, so the counit ϵL is an isomorphism. By the triangle laws of our adjunction we know
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5 The Model Theory of Interval Algebras

that
Int (ϵL) ◦ ηInt(L) = idInt(L)

As ϵL is an isomorphism, Int (ϵL) must also be an isomorphism, so ηInt(L) too is an iso-
morphism. In particular, this implies that Int (L) |= ϕfull. As a result, A |= ϕfull too and
A ∼= Int (L′) for some strict linear order L′. Recall that Int (L′) is interpretable in L′, hence
we can translate the formula ϕ(x; y) to some formula ϕ′(x′; y′) in the language of strict linear
orders. In addition, we can also translate the sequences of tuples (ai)i<ω and (bI)I⊆ω to
sequences of tuples in L′. This means that the formula ϕ′(x′; y′) has the IP, making it so the
linear order L′ also has the IP. This is a contradiction as all linear orders have the NIP.

However, as we saw before with the exponential fields case, by modifying models even slightly
we can add enough expressive power to get the IP. In our case, by starting with an interval
algebra with the NIP, we can remove enough intervals to allow for the IP.

Example 5.6. Let L = R ⊔ N be the linear order given by putting all the elements of
R before N. By picking out the right substructure A ⊆ Int (L) we should get an interval
algebra with the IP.

First fix some bijection f : P(N) ∼−→ R and then let A be the substructure of Int (L) given
by

A =
{
(x, y)

∣∣ x, y ∈ R such that x < y
}

∪
{
(f(I), i)

∣∣ I ⊆ N, i ∈ I
}

∪
{
(x, y)

∣∣ x, y ∈ N such that x < y
}

In particular, the only intervals (x, a) ∈ A with x ∈ R and a ∈ N come from the set
comprehension

{
(f(I), i)

∣∣ I ⊆ N, i ∈ I
}
. Using IS to denote the interval (f(S) − 1, f(S)

and Jn to denote (n, n+ 1), we would end up with something like

. . . R . . . N . . .

I{0} J0

I{1,2} J1

J2

Now the formula
ϕ(I; J) = ∃K, (J m−−→ K) ∧ (K

m−−→ I)

has the IP and this is realised in A by the sequences (ai)i∈N and (bI)I⊆N defined by

ai = (i, i+ 1) bI = (f(I)− 1, f(I))
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5 The Model Theory of Interval Algebras

Since for any i ∈ N and I ⊆ N, A |= ϕ(ai, bI) if and only if there exists some interval
(x, y) ∈ A with x, y ∈ L such that

(f(I)− 1, f(I))
m−−→ (x, y) ∧ (x, y)

m−−→ (i, i+ 1)

This can only happen if x = f(I) and y = i, so we would require

(f(I), i) ∈
{
(f(I), i)

∣∣ I ⊆ N, i ∈ I
}

which happens if and only if i ∈ I as needed.
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6 Evaluation

At the start of this project we had one overarching objective, that was to come up with some
axioms for the theory of interval algebras and study their model theoretic consequences. As
such the main topic of concern for our evaluation will be deciding how appropriate our
axiomatisation was.

Firstly, we should consider the models allowed by our axiomatisation. We saw that the
models of TAIA coincide with the class of substructures of the interval algebras Int (L). These
are exactly the type of models that underlie the work in [5], on this front we should be very
happy with our axiomatisation. In addition, we also saw that TAIA ∪ {ϕfull} axiomatised
the class of models of the form Int (L), letting us distinguish an important class of models
through a single sentence.

In addition, TAIA is also finite, meaning there is very little ambiguity when checking whether
a structure is a model or not. On the other hand, despite being finite, there are quite a
lot of axioms in TAIA due to its many relations. This means proving things about interval
algebras can be quite labourious, with a lot of quite distinct cases to check. If we could find
some symmetry in the transitivity relations this would help a lot, but there does not seem
to be anything too tangible to simplify reasoning.

Finally, with our given axioms, we managed to prove all of the results we were originally
interested at the start of this project, so our axiomatisation was definitely something we
could work with.
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7 Conclusion

We started this report by establishing a list of axioms for the theory of interval algebras,
which we showed to be satisfiable, containing at least the main class of models we expected.
Then, through further study of the interval construction, we saw it to be the right adjoint
of the points construction. The unit of this adjunction let us see that all models were a
substructure of the intervals over an appropriate linear order, cementing our axiomatisation
as worth considering.

Through this adjunction, we managed to reduce the most of the work on the Fraïssé limit
of FIA to the proofs for FCh, giving a very elegant and conceptual proof that the limit of
FIA was Int (Q).

By ordering the intervals in a linear order lexicographically, we saw that the stable and finite
interval algebras coincided and in attempting to characterise the interval algebras for which
the adjunction unit was an isomorphism, we found a formula ϕfull axiomatising the interval
algebras of the form Int (L). Since the interval algebra Int (L) is always interpretable in L,
this let us conclude that also had the NIP.

This is where our work finished, leaving some possibilities for future work.

First, suppose that we removed the I <−−→ J conjunct from ϕfull to get

ϕfullish =
(
∀I, ∀J, (I m−−→ J)→ ∃K, (I s←− K) ∧ (K

f−→ J)
)

∧
(
∀I, ∀J, (I o−→ J)→ ∃K, (I f←− K) ∧ (K

s−→ J)
)

∧
(
∀I, ∀J, (I s−→ J)→ ∃K, (I m−−→ K) ∧ (K

f−→ J)
)

∧
(
∀I, ∀J, (I f−→ J)→ ∃K, (I m←−− K) ∧ (K

s−→ J)
)

∧
(
∀I, ∀J, (I d−→ J)→ ∃K, (I m←−− K) ∧ (K

s−→ J)
)

Then it would be interesting to see the type of interval algebras satisfying ϕfullish. We
expect such an interval algebra A to look like a gluing of {Int (Li)}i∈I where the indexing
set I is linearly ordered. If this were true, then letting L be the linear order cosntructed
by gluing {Li}i∈I , we would expect A to be interpretable in the linear order L plus some
colouring predicates. A linear order always has the NIP, regardless of the number of colouring
predicates added, so this would let us extend our result about NIP interval algebras.

Another question possibly worth considering further comes from our work done with the
interval construction, which we saw to be a right adjoint functor. From category theory
we know that right adjoints preserve limits, and dually that left adjoints preserve colimits.
Work by Caramello [15] shows how to realise the Fraïssé limit of a Fraïssé class as a colimit
in the language of category theory. So here we have a functor, Int (−), preserving quite
a complicated colimit. This could hint at a couple of options: it might be the case that
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7 Conclusion

Int (−) is also a left adjoint functor, although if this is the case it would have to be some
new functor distinct from Pts (−). Alternatively, there could be something specific about
Fraïssé limits which meant they should be preserved by right adjoints. In either case, it
would be interesting to see what develops.
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